Anomaly of total boron concentration in the brackish waters of the Baltic Sea and its consequence for the CO2 system calculations

Highlights

• Total boron (TB) concentration anomaly has been identified for the Baltic Sea.
• The mean TB concentration in the Baltic Sea rivers (S = 0) is 13.8 μmol kg−1.
• Ignoring the TB anomaly causes errors in numerical determination of pCO2 and pH.

Abstract

Borates are the third most important component of total alkalinity (AT) in the oxic waters. Their concentrations are a function of the dissociation constant of boric acid and total boron (TB) concentration. The latter is approximated from salinity (S) as boron behave conservatively in the seawater. The linear dependencies between TB and S developed for the open ocean contain no intercept suggesting that river water contains no boron. Based on the historical data and our own measurements we identified a TB vs. S relationship specific for the Baltic Sea: TB [μmol kg−1] = 10.838 ∗ S + 13.821. In the series of the sensitivity tests we analysed what effect can have this anomaly on the determination of borate alkalinity (AB) and on the calculations within the CO2 system performed with AT as an input variable. Due to the high pKa for boric acid the influence of TB anomaly on AB exists only for pH > 8. The highest deviation in AB appears at low salinities. When salinity increases the effect becomes smaller and at salinities > 14, due to lower slope in TB vs. S dependency in the Baltic than in the open ocean, the effect on AB turns to negative and decreases further with the S increase. These uncertainties in ABinfluence calculations of pCO2 (CO2 partial pressure) and pH, when CT (total COconcentration) and AT are used as input parameters (the combination used in biogeochemical models). For pCO2 the discrepancies in calculations are not very much dependent on the AT. The highest are observed for low salinities and pH of 8.2–8.4, however they do not exceed 10 μatm. This relatively low influence of TB anomaly on pCO2 calculations is a result of the high distance on the pH scale between high pCOconditions (low pH) and the highest AB anomaly (high pH). In case of pH calculations the highest influence of TB anomaly is observed for the low AT and low S waters. For three different AT considered in our study the highest pH errors (up to 0.05 pH unit) were observed for AT = 500 μmol kg−1, while the lowest (up to 0.01 pH unit) were observed for highly buffered waters (AT = 3000 μmol kg−1). Irrespective of the AT the highest errors were found for low CT simulating low pCO2 (and thus high pH) conditions. This is due to the high pKa for boric acid that shifts the effects of the TB anomaly to high pH values. Although the observed discrepancies in pH and pCO2 calculations due to TB anomaly manifest themselves only at the specific environmental conditions the use of experimentally obtained TB vs. S dependency will increase the accuracy of the COsystem calculations for the Baltic Sea and likely for other brackish systems.

Kuliński K., Szymczycha B., Koziorowska K., Hammer K. & Schneider B., in press. Anomaly of total boron concentration in the brackish waters of the Baltic Sea and its consequence for the CO2 system calculations. Marine Chemistry. Article (subscription required).

 

 


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading