Mineral fine structure of the American lobster cuticle

A major role of lobster integument is protection from microbes. Calcite and amorphous calcium carbonate are the most abundant and most acid vulnerable of the cuticle minerals. We propose that calcite is invested in neutralizing an acidifying environment modulated by the epicuticle. A minor cuticle component is carbonate apatite (CAP), proposed to play critical roles in the integument’s structural protective function. The CAP of lobster exhibits a flexible composition; its least soluble forms line the cuticular canals most exposed to the environment. A trabecular CAP structure illustrates efficient use of a sparse phosphate resource, cooperating in the hardness of the inner exocuticle. A schematic model of the cuticle emphasizes structural and chemical diversity. A thin outer calcite layer provides a dense microbial barrier that dissolves slowly through the epicuticle, providing an external, alkaline, unstirred layer that would be inhibitory to bacterial movement and metabolism. Injury to the epicuticle covering this mineralized surface unleashes an immediate efflux of carbonate, accentuating the normal alkalinity of an antimicrobial unstirred layer. The trabecular CAP inner exocuticle provides rigidity to prevent bending and cracking of the calcite outer exocuticle. The combined mineral fine structure of lobster cuticle supports antimicrobial function as well as plays a structural protective role.



Kunkel J. G., Nagel W. & Jercinovic M. J., 2012. Mineral fine structure of the American lobster cuticle. Journal of Shellfish Research 31(2): 515-526. Article (subscription required).

0 Responses to “Mineral fine structure of the American lobster cuticle”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,439,854 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives