Potential influence of sea cucumbers on coral reef CaCO3 budget: a case study at One Tree Reef

To endure, coral reefs must accumulate CaCO3 at a rate greater or equal than the sum of mechanically, biologically and chemically mediated erosion rates. We investigated the potential role of holothurians on the CaCO3 balance of a coral reef. These deposit feeders process carbonate sand and rubble through their digestive tract and dissolve CaCO3 as part of their digestive process. In aquarium incubations with Stichopus herrmanni and Holothuria leucospilota total alkalinity increased by 97 {plus minus} 36 and 47 {plus minus} 18μmol kg-1, respectively. This increase was due to CaCO3 dissolution, 81 {plus minus} 34 and 34 {plus minus} 16μmol kg-1 and ammonia secretion, 16 {plus minus} 4 and 14 {plus minus} 4μmol kg-1, respectively for these species. Surveys conducted at a long term monitoring site of community calcification (DK13) on One Tree Reef indicated that the density of sea cucumbers was ca. 1 individual m-2. We used these data and data from surveys at Shark Alley to estimate the dissolution of CaCO3 by the sea cucumbers at both sites. At DK13 the sea cucumber population was estimated to be responsible for nearly 50% of the nighttime CaCO3 dissolution, while in Shark Alley for most of the nighttime dissolution. Thus, in a healthy reef, bioeroders dissolution of CaCO3 sediment appears to be an important component of the natural CaCO3 turnover and a substantial source of alkalinity as well. This additional alkalinity could partially buffer changes in seawater pH associated with increasing atmospheric CO2 locally, thus reducing the impact of ocean acidification on coral growth.

Schneider K., Silverman J., Woolsey E., Eriksson H., Byrne M., & Caldeira K., in press. Potential influence of sea cucumbers on coral reef CaCO3 budget: a case study at One Tree Reef. Journal of Geophysical Research doi:10.1029/2011JG001755. Article (subscription required).


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: