The case for a global ocean carbon observation network

Since 1958, the Global Carbon Budget has tracked anthropogenic CO2 emissions and their redistribution among the atmosphere, ocean, and land. Annual budgeting is necessary due to large year-to-year variability in CO2 sources (primarily fossil fuels) and sinks (primarily climate driven). However, uncertainties remain, due to a lack of data, that hinder both research seeking to better understand the global carbon cycle and efforts to independently verify reported CO2 emissions. To refine our understanding of how much atmospheric carbon the planet—and the life it supports—can tolerate, we must significantly increase observational data collection, especially in remote, chronically undersampled regions.

Saildrone proposes a global fleet of unmanned surface vehicles (USVs) for sustained carbon monitoring, supported by a public-private partnership made up of the international science community and private companies developing innovative solutions for ocean observation.

Seeking impact partners

Saildrone proposes a global fleet of 40 vehicles to collect carbon data for sustained monitoring. Saildrone’s USVs are environmentally friendly, using wind power for propulsion and solar power to run the onboard sensors, computers, and satellite and navigation instruments. In addition to carbon data, each Saildrone autonomous vehicle collects nearly two dozen meteorological and oceanographic metrics above and below the sea surface at a frequency of 1 minute or greater.

“Over the past 20 years of making ship-based measurements, we’ve learned that there’s a lot more variability in the amount of carbon the Southern Ocean can take up than we’d previously realized. We need more information to understand the regional changes, and how carbon uptake is changing year to year, but we can’t get that with ships alone,” said Dr. Bronte Tilbrook, a biogeochemist studying ocean acidification and the global carbon cycle at Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Saildrone is seeking impact partners to operationalize its global data infrastructure, especially in remote, chronically undersampled regions. Partnerships between the private sector and the international ocean observation community present exciting opportunities to leverage the innovative technologies required to improve understanding of the planet’s carbon budget. After all, we can’t correct what we can’t measure, and we can’t plan for what we don’t know.

To get involved in Saildrone’s impact science program, please contact us.

Saildrone, 9 December 2020. Full article.


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading