Oysters on acid: how the ocean’s declining pH will change the way we eat

The ocean is changing faster than it has in the last 66 million years. Now, Oregon oysters are being farmed in Hawaii. That fix won’t work forever.

A little more than ten years ago, a mysterious epidemic wiped out baby oyster populations. It started in 2006, when Whiskey Creek shellfish hatchery in Oregon lost 80 percent of its cultured larvae. Around the same time, 200 miles north in Washington, Taylor Shellfish saw similarly high mortality rates. And oysters in the wild weren’t faring much better: Oystermen who usually sourced larvae from Washington’s Willapa Bay, one of the largest natural oyster-producing estuaries in the country, weren’t finding enough stock to seed their beds.

After two years of massive losses, scientists discovered what was really wrong.

It wasn’t long before the epidemic migrated to the East Coast. In the Gulf of Maine, hatchery owner Bill Mook began to notice larval die-offs and slowed growth rates following big storms that pumped fresh water into his hatchery starting in 2009. Sometimes, the surviving organisms were severely deformed. No one knew exactly what had gone wrong.

Suspecting bacterial infection or a problem with the feed, Whiskey Creek and Taylor Shellfish invested in machines that kill vibrio tubiashii, a bacteria that is a common culprit in oyster larvae die-offs. Survival rates didn’t improve.

But after two years of massive losses and no answers, scientists testing the waters discovered what was really wrong: the ocean water flowing into the hatcheries had changed, and the oysters weren’t able to build their shells. Without shells, they couldn’t survive.

H. Claire Brown, The New Food Economy, 28 November 2017. Full article.

0 Responses to “Oysters on acid: how the ocean’s declining pH will change the way we eat”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,046,059 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book