Serpentinite and the dawn of life

Submarine hydrothermal vents above serpentinite produce chemical potential gradients of aqueous and ionic hydrogen, thus providing a very attractive venue for the origin of life. This environment was most favourable before Earth’s massive CO2 atmosphere was subducted into the mantle, which occurred tens to approximately 100 Myr after the moon-forming impact; thermophile to clement conditions persisted for several million years while atmospheric pCO2 dropped from approximately 25 bar to below 1 bar. The ocean was weakly acid (pH ∼ 6), and a large pH gradient existed for nascent life with pH 9–11 fluids venting from serpentinite on the seafloor. Total CO2 in water was significant so the vent environment was not carbon limited. Biologically important phosphate and Fe(II) were somewhat soluble during this period, which occurred well before the earliest record of preserved surface rocks approximately 3.8 billion years ago (Ga) when photosynthetic life teemed on the Earth and the oceanic pH was the modern value of approximately 8. Serpentinite existed by 3.9 Ga, but older rocks that might retain evidence of its presence have not been found. Earth’s sequesters extensive evidence of Archaean and younger subducted biological material, but has yet to be exploited for the Hadean record.

Sleep N. H., Bird D. K., & Pope E. C., 2011. Serpentinite and the dawn of life. Philosophical Transactions of The Royal Society B 366(1580):2857-2869. Article (subscription required).

  • Reset


OA-ICC Highlights

%d bloggers like this: