Investors are betting big on carbon removal technology. The reality is more complicated.

Scientists stand beside a new carbon capture test unit at Longanet power station on May 29, 2009 in Longanet, Scotland. The technology being tested at the coal fired power station removes carbon dioxide using chemicals and turns it into a liquid which is stored underground. Jeff J Mitchell—Getty Images.

In the late 1800s, before the Wright Brothers took off, earth’s annual average temperature was about 13.7 degrees Celsius. But since the Industrial Revolution, the global temperature has gone up by about 1 degree Celsius because greenhouse gas emissions (such as carbon dioxide) in the atmosphere trap heat like a blanket. Science says a hotter globe triggers extreme weather events: more fires, bigger floods, stronger hurricanes.

Without drastic measures, researchers say, the climate consequences will be much, much worse. So what’s the plan? The Paris Agreement wants to make sure earth absolutely does not get 2 degrees Celsius hotter than pre-industrial levels—and ideally no more than 1.5 degrees. This goal requires countries to act now (or, more accurately, yesterday) by reducing emissions to net-zero by 2050. Net-zero means greenhouse gases removed from the atmosphere cancel out greenhouse gases emitted from fossil fuels and industrial processes.

Will it be enough to avert a climate disaster? Some say no. Every year about 51 billion tons of greenhouse gases get released into the air, with carbon dioxide being the main culprit, making up 76% of the mix. In 2021, the global average level of carbon dioxide set a new record high at 414.72 parts per million. With so much carbon in the air, reducing emissions is critical, but not enough to meet climate goals. This is where using carbon removal technology—vacuuming CO2 straight out of the atmosphere for safe storage—comes in. If you follow the money, investors are betting big that carbon removal technology will be the way forward.

Based in Canada, Planetary Technologies is taking a more liquid approach. Its technology is based on the fact that the atmosphere and the ocean are constantly communicating. Too much CO2 in the air leads to too much CO2 in the oceans, which over time leads to dangerous ocean acidification, says Mike Kelland, CEO of Planetary Technologies.

“What if we reverse that?” Kelland says. “What if we put antacid into seawater, then what does that do? Research says it starts to rebalance and the ocean pulls CO2 out of the atmosphere, safely storing it for hundreds of thousands of years.”

The antacid (magnesium hydroxide) works like TUMS or baking soda, lowering the pH balance of seawater to make it less acidic. The idea is that by adding antacid to outflows from wastewater treatment facilities—which already are permitted and monitored to ensure the safety of treated water before it goes into the ocean—it will combine with dissolved CO2 in the surface oceans to form carbonates and bicarbonates that remain in the seawater for a long, long time. This, in turn, would allow more CO2 from the atmosphere to be captured and stored in the ocean.

Russell Nichols, Time, 24 October 2022. Full article.

  • Reset


OA-ICC Highlights