The ocean has a serious case of heartburn. Is relief on the way?

The Earth’s atmosphere contains more carbon dioxide (CO2) than at any time in the last 20 million years, researchers say. The levels would be even higher if it weren’t for the ocean, which slurps up carbon emissions and stores roughly 60 times more carbon than the atmosphere. But high carbon levels in the ocean are causing the pH of seawater to drop and ocean acidity to rise. This phenomenon, known as ocean acidification, has given our top ally in the fight against climate change a serious case of heartburn.

Fortunately, the weathering of rocks on land produces alkalinity, which has an “antacid” effect once it washes into the ocean. Researchers estimate there is currently the equivalent of 200 billion antacid tablets in the global ocean. Alkalinity also plays a critical role in helping the ocean store carbon. But there’s a problem: alkalization of the ocean from the natural geological cycle is slow, sometimes taking hundreds of thousands of years to occur.

Adam Subhas, a marine chemist at WHOI, wants to speed up the process. He is investigating the viability of an ocean intervention-based process known as ocean alkalinity enhancement, which he loosely describes as adding “Tums” to the ocean.

“Ocean alkalinity enhancement has the potential to offset the effects of ocean acidification by increasing pH levels and neutralizing the CO2 building up in the water,” he says. “And, it could help to mitigate anthropogenic CO2 emissions by increasing the buffering capacity of the global ocean.”

Before we can start alkalinizing the ocean, however, we need to understand the impacts it will have on marine life.

Baby Coral
A three-week-old coral polyp (left), and its delicate skeleton (right), demonstrate how corals respond to increasing ocean acidification, which can impair their ability to build their calcium carbonate skeletons. (Photo by Elizabeth Drenkard, © Woods Hole Oceanographic Institution)

Subhas and colleagues from the National Oceanography Centre and the University of Portsmouth in the UK have been running experiments to investigate potential impacts. Last year, the team collected seawater samples from open-ocean sites near the Bahamas and in the central North Atlantic Ocean. The samples included shell-building organisms significantly smaller in size than clams and snails—such as plankton and amoebas. The researchers added precise mixtures of sodium bicarbonate and sodium carbonate—baking soda, essentially—to 10 liter incubation containers of seawater in varying amounts: low, medium, and high. They also added an isotope tracer, which allowed them to see how or if the organisms take up carbon and incorporate it into their structures.

“We need to measure the community’s biological response so we can determine if, for example, the alkalinity is causing the organisms to grow more, if there’s more carbon uptake, or if there’s no response at all,” Subhas says.

B.B. Cael, a biogeochemist at the National Oceanography Centre, says there’s very little understanding in the scientific community about how natural marine biological communities respond to increased alkalinity levels. He and Subhas began collaborating on ocean alkalinity enhancement after participating in the NSF-EAGER Chief Scientist Training Cruise on the R/V Kilo Moana in June, 2019.

“We’re constantly surprised by the way life responds to things,” Cael says. “So, getting a sense for what the biological response will be, and if there’s a threshold in terms of the amount of alkalinity we could put into the ocean without causing a response, is really important.”

The researchers hope to avoid unintended consequences. For example, if alkalinity enhancement causes algae in surface waters to photosynthesize less—which is a possibility—it could cause a negative climate feedback loop by impairing the ocean’s ability to soak up as much CO2 from the atmosphere. Another unintended consequence could occur, Subhas says, if organisms start using the alkalinity to build thicker-than-normal shells. This would leave the ocean less alkaline, which could interfere with its ability to absorb atmospheric carbon emissions.

Evan Lubofsky, Woods Hole Oceanographic Institution, Oceanus, 1 July 2021. Full article.

1 Response to “The ocean has a serious case of heartburn. Is relief on the way?”

  1. 1 Angel Braestrup 2 July 2021 at 22:53

    It is not just the unintended consequences, it is the known costs. Will intervening in ocean chemistry at scale increase greenhouse gas emissions to the point where any benefit is offset by the energy and related costs of sourcing the “antacid,” transporting the antacid, distributing the antacid, and dealing with whatever disaster is caused by trying to replicate in the global ocean, any potential positive effects observed in a relatively tiny test site? Perhaps investing the same funds in restoring the stabilizing habitats and improving incoming water quality would be more cost-effective and have more beneficiaries. The past is littered with techno-failures in pursuit of good- we cannot afford more.

Comments are currently closed.

  • Reset


OA-ICC Highlights

%d bloggers like this: