Lobster research explores ocean warming effects

ORONO — A team of researchers from the University of Maine’s Darling Marine Center in Walpole and Bigelow Laboratory for Ocean Sciences in East Boothbay and the Maine Department of Marine Resources in West Boothbay Harbor recently published their research on the effects of ocean warming and acidification on gene expression in the earliest life stages of the American lobster.

The work was published in the scientific journal Ecology and Evolution with collaborators from the University of Prince Edward Island and Dalhousie University in Canada.

The team’s experiments examined the gene regulatory response of post-larval lobsters to the separate and combined effects of warming and acidification anticipated by the end of the 21st century. They found that genes regulating a range of physiological functions, from those controlling shell formation to the immune response, are either up- or down-regulated. Importantly, they observed that the two stressors combined induced a greater gene regulatory response than either stressor alone.

The results from the study indicate that changes in gene expression of post-larval lobster may act as a mechanism to accommodate rapid changes in the ocean environment. Team leader Maura Niemisto noted that “there is still need for further study to determine how rapidly populations of the species may be able to adapt to changing conditions. To better understand how gene regulation in response to environmental changes functions within the species, we should look at subpopulations and multigenerational studies to determine the extent of species’ capacity to respond to altered environmental conditions.”

According to the National Marine Fisheries Service, the American lobster fishery is the most valuable in North America. The species holds particular socioeconomic importance in the Gulf of Maine, where sea surface temperatures are increasing at a rate faster than most of the world’s oceans and waters are more susceptible to higher rates of acidification.

The center of the American lobster range has been shifting northward in response to warming ocean temperatures. However, little is known about how the species will respond to the combined effects of increasing ocean temperatures and acidification. This study is a first step in answering that question. The species’ earliest life stages are thought to be especially vulnerable to these climate related challenges.

The research was supported by a grant from the NOAA’s Ocean Acidification Program and the National Sea Grant Program. Additional funding for student internships came from Bigelow Laboratory’s Research Experience for Undergraduates program, supported by the National Science Foundation.

The Ellsworth American, 21 February 2021. Article.

  • Reset


OA-ICC Highlights

%d bloggers like this: