Trading reproductive potential for survival? How acidification could affect a key crustacean in the future ocean

Credit: Pixabay

The climate is changing. This dire scenario is slowly starting to be felt all around the world, with global temperature averages increasing and climate patterns becoming disrupted. The problem begins with the continuous injection of carbon dioxide (CO2) into the atmosphere. As concentrations of this greenhouse gas increase, its dissolution into surface waters is favoured, and thus oceanic-CO2 increases as well. This gives rise to the phenomenon of Ocean Acidification (OA), which effectively creates a harsh environment for most marine species, and that has been the source of growing interest and concern not only in the scientific community but also in the general public.

Despite extensive research being conducted on the immediate effects of increased CO2 – i.e. the exposure of a single generation – a relatively new approach in experimental ecology aims to assess the short- to long-term effects of this stressor across several generations. As acclimation occurs in one generation, individuals experience different physiological and behaviour changes that emerge as a response to a stressful environment, and which aim at maximizing the individual’s ability to endure or move away from these conditions. Organisms may also effectively influence the following generations through parental conditioning, which includes the inheritance of non-genetic traits from adults to their offspring. This is something that has been shown to lead to largely positive effects in the offspring’s response, but that can also render the next generations more vulnerable to these environmental stressors.

There is still much to learn concerning the potential for marine species to adapt to long-term climate change, and in particular to ocean acidification. One group that is still clearly understudied is the group of crustaceans. This is, in part, due to the idea that crustaceans – in particular, those subject to daily environmental variations such as those felt in coastal and intertidal ecosystems – are naturally more resilient to environmental variation. There are now several examples of negative impacts of OA over a single generation in this group (e.g. changes in egg production and embryonic development, reduction in survival and growth, etc.), thus it is possible that crustaceans could be far more vulnerable to OA than previously thought.

To date, only a handful of studies with ocean acidification scenarios have focused on the transgenerational and/or multigenerational effects in crustacean species, with most of them being performed in copepods. Another very interesting crustacean group is that of amphipods (order Amphipoda, Class Crustacea; aka “scuds”). This group includes numerous and especially diverse species, which occur all over the world in very different environments, and are considered a key node in most marine food webs, especially in rocky coastal regions. Their role as a primary consumer of algae and organic detritus, as well as a predator to small invertebrates, and as prey for numerous fish, birds and other crustaceans, renders them a very ecologically relevant subgroup.

Since disturbances in keystone species can perpetuate into cascading ecological effects, we wondered what would be the initial, transgenerational responses of an amphipod species (a gammarid, Gammarus locusta), exposed to a predicted scenario of OA. To address possible effects, we measured overall survival and key reproductive traits – such as egg number, the duration of mate-guarding behaviours that predicts egg fertilization, the duration of embryonic development and the number of living juveniles that effectively emerge from their eggs and from their mother’s brood pouch – over the course of two generations, from juvenile to sexual maturity.

In summary, we found evidence to suggest that, under predicted OA conditions G. locusta can be negatively affected by high CO2. Initially, the gammarids exhibited a steep drop in survival and an increased egg production – which hints at a possible strategy to maximize the chances of offspring survival – together with the disruption of normal duration of mate-guarding behaviours.

In the second generation, survival seemed to recover to near-normal levels, but there was evidence to a likely trade-off between reproductive capacity and survival: a severe drop in female investment and consequently in fecundity were shown for the acidified lineage, despite rising survival rates. This could signal that G. locusta resorts to changes in normal energy allocation to its biological processes (such as reproduction) when confronted with the need to compensate the severe effects of OA in its survival.

Francisco O. Borges, Science Trends, 14 August 2018. Full Article.

0 Responses to “Trading reproductive potential for survival? How acidification could affect a key crustacean in the future ocean”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,129,669 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book