Marine life and ocean acidity

Did You Know?

  • The current rate of change in ocean pH is roughly 50 times faster than known historical rates of change.
  • Scientists estimate that the current rate of change in ocean pH has not likely occurred on the planet for the past 100 million years.
  • More than one billion people worldwide get their primary protein food source from the ocean.

The amount of carbon dioxide (CO2) emitted into the atmosphere has risen about 40% above pre-industrial levels. The oceans absorb about 25% of CO2 released into the atmosphere, where the CO2 reacts with seawater to form carbonic acid, which lowers ocean pH levels, making the water more acidic.

The acidity of ocean surface waters has increased by about 30% over the last 250 years and could become nearly 150% more acidic by the end of the century if CO2 emission levels continue to increase at the current pace. Different regions of the ocean are more susceptible to an increase in acidification due to other factors such as coastal upwelling, river and glacial discharge, sea ice loss, and urbanization.

Increasing ocean acidity decreases the ability of shells and other calcium carbonate structures, such as coral skeletons, to form. Examples of sea life that are being directly affected are oysters, clams, sea urchins, shallow water corals, deep sea corals, and certain species of plankton. On a broader scale, the inability of these creatures to fully develop will also negatively impact other members of the food web that feed on them, including salmon, whales, and humans.

Learn More

The illustration below demonstrates the chemical process of ocean acidification.

Ocean Acidification

©NEEF

The photo below from the 2014 National Climate Assessment (link is external) shows what happens to a pteropod’s shell in seawater that is too acidic. On the left is a shell collected from a live pteropod from a region in the Southern Ocean where acidity is not too high. On the right is a shell from a pteropod collected in a region where the water is more acidic. Pteropods are small, free-swimming snails that are eaten by a range of marine species, from krill to whales. They are an important food source for North Pacific juvenile salmon.

Shells Dissolve in Acidified Ocean Water

National Climate Assessment: Bednaršek et al. 2012. Nina Bednaršek

The graphic below from the NOAA PMEL Carbon Program (link is external) shows how the seawater around Hawaii has become more acidic (decrease in pH) as levels of CO2 in the atmosphere and ocean have increased.

Seawater CO2

Nick Bradford, NEEF, 2018. Press release.

0 Responses to “Marine life and ocean acidity”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,129,669 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book