Acid trip: ocean acidification alters marine animal behaviour


Photo by Jeff Clements

When assessing the impacts of ocean acidification (OA) on marine animals, peer-reviewed studies predominantly address the mortality and physiology of these organisms. However, over the past few years, it has become apparent that animal behavior can also be altered under increasingly acidifying conditions.

A recent study by Sue-Ann Watson and colleagues at James Cook University in Australia demonstrated that near-future CO2 levels can interfere with neurotransmitter functioning (i.e., chemical functioning of the brain), leading to a 50% decrease in predatory escape behavior in a species of marine gastropods, making them more susceptible to being eaten by predators in high-CO2 conditions. Studies have also suggested shifts in the behavior of various fishes, including increased anxiety in rockfish, hindered hearing behavior in clownfish, and reduced swimming behavior in dolphinfish, with the likely mechanism being hindered neurotransmitter functioning. Some of these observations in fishes have also been translated to invertebrate organisms as well. Alongside these behavioural modifications under acidic water-column conditions, some interesting research on the east coast of North America has also been suggesting that juvenile clams can change their behavior in response to increased acidification as well, except in this case, the clams respond to sediments and not the water column.

Before they mature and dig into sediments at the bottom of the ocean in coastal areas, clams go through what is called a larval stage, where they swim around and develop in the water column (this is akin to a caterpillar and a butterfly – the caterpillar is the larvae and the butterfly is the mature). After a certain period of time, the larval clams will sink to the bottom to start their life as mature animals. However, before they dig into the sediment to start the next stage of their life, they can test the chemistry of the sediment and make a decision as to whether or not it is an appropriate place to live. So if they don’t like the initial place where they land, they can refuse to burrow into it and may be able to move to a different area.

Recent research has suggested that the acidification of these sediments may play impact the behavior of these clams in their decision to dig or leave. One study conducted by Mark Green and colleagues at St. Joseph’s College in Maine, USA assessed the impact of increasing acidification within marine muds on the burrowing behavior of juvenile quahogs (Mercenaria mercenaria).

By manipulating the level of acidity in different containers of soft-sediment and watching whether or not clams burrowed into them, the scientists were able to determine that as the sediment becomes more acidic, the clams reject it and don’t burrow – the first time that acidification was found to have an impact on clam burrowing behavior.

Given this interesting result, researchers at the University of New Brunswick in New Brunswick, Canada wanted to see if this lack of burrowing actually resulted in the clams moving away. By taking the same approach as Green and colleagues, only with a different species of clam (soft-shell clam, Mya arenaria), myself and Dr. Heather Hunt (see “Publications” to download a PDF) observed the same trend of burrowing behavior that Green and colleagues did in their study – more acidic sedimentss had less clams burrowing. However, by adding flowing water to the experiments (a means by which soft-shell clams move), we were able to determine that when sediment was more acidic, more clams left than when sediment was not as acidic.

The combined results of our study and those of Green and colleagues provide evidence that the acidification of marine soft-sediments can influence the behavior and population dynamics of juvenile clams by altering their decision to burrow and subsequently their dispersion. Since acidic conditions dissolve the shells of these animals and result in death, this could be the reason why the clams decide to move away from these acidic muds. Other reasons are possible, however. For example, increased concentrations of CO2 may depress other physiological functions such as respiration, metabolism, or feeding, which would also contribute to the negative burrowing cue (recruitment cue) detected in these two studies.

These studies, along with others, highlight the impact of ocean acidification on the behavior of marine-dwelling animals. Changes in behavior have the potential to impact these animals in both positive and negative ways.

The bright side, at least for clams, is that if they can avoid more acidic sediments and move to better ones, they enhance their chances of avoiding “death by dissolution” or other stressful conditions, so long as there is enough suitable mud available! Ultimately, scientists have much work to do in determining how the future chemistry of our oceans could impact the behavior of marine organisms and how this could in turn influence their survival.

Jeff Clements, Musings of a Marine Ecologist, 25 June 2014. Article.

  • Reset


OA-ICC Highlights

%d bloggers like this: