Acclimation and adaptation to ocean acidification of key ecosystem components in the California Current System

Intellectual Merit. This project will investigate the impacts of ocean acidification (OA) on two ecologically important, calcification-dependent marine invertebrates in relation to local-to-coastal variation in carbonate chemistry (e.g., pH and aragonite saturation) in the California Current Large Marine Ecosystem (CCLME). An interdisciplinary team of investigators with expertise in physical and chemical oceanography, marine ecology, biochemistry, molecular physiology, and molecular genetics will carry out an integrated, lab and field, multi-site investigation of the ecological, physiological, and evolutionary responses of sea urchins and mussels to spatial and temporal variation in OA. The research will take place in the context of a mosaic of variable oceanography, including recently documented latitudinal variation in carbonate chemistry along the upwelling-dominated US west coast. Variation in upwelling regimes from Washington to southern California generates spatial and temporal gradients in concentration of CO2 that shoal to surface waters during upwelling events, extending shoreward into the inner shelf region. Through well-known chemical pathways, influxes of CO2 cause present-day declines in pH in coastal ecosystems that are lower than values forecast for the ocean in general in the year 2200. Lower than “normal” pH can influence organisms by altering intracellular biochemistry, and especially, for calcification-dependent marine organisms, interfere with formation of hard parts as the aragonite saturation state falls near or below 1.0. Because calcifiers in the upwelling-dominated CCLME have historically experienced persistent regional variation in pH, populations are likely differentially acclimatized and/or adapted to a variable carbonate chemistry environment. The new challenge to these organisms is that with global change and the resulting increase in seawater CO2, they already may be close to their acclimatization or adaptational capacity, and thus may have limited ability to respond to additional increases in CO2. It is this challenge, the mechanistic ability of calcifying invertebrates to acclimate or adapt to increasing CO2 and aragonite saturation states < 1.0 that we address here.



Preliminary results from NSF-funded, local-scale studies of sea urchin and oyster larvae (by PIs included in the present team) has made inroads into this question, but the response of these widely-ranging species to ocean acidification across the full range of conditions in the CCLME remains unclear. This project includes five integrated elements. (1) To document the oceanographic context in which the study organisms live, the team of PIs will build upon two local-scale NSF-funded networks of sensors (in Oregon and northern California) to quantify carbonate chemistry in four regions of the CCLME with contrasting upwelling regimes, and thus, likely a wide range of differences in carbonate chemistry. Based on NOAA surveys, OA should be most intense in northern California and Oregon, less intense in central California, and least intense in the Santa Barbara channel, east of Point Conception. (2) To examine physiological, genomic, and genetic mechanisms underlying acclimatization and adaptation to OA conditions, the investigators will carry out coordinated and integrated studies of adults and larvae of sea urchins and mussels collected from each of two sites within each of the four regions. In common-garden experiments using NSF-funded laboratory mesocosms at UCSB and UCD-BML, the researchers will culture sea urchins and mussels under different CO2 and temperature regimes, and use genomics techniques

NSF Org:
OCE
Division of Ocean Sciences

Initial Amendment Date:
September 23, 2010

Latest Amendment Date:
September 23, 2010

Award Number:
1041089

Award Instrument:
Standard Grant

Program Manager:
David L. Garrison
OCE Division of Ocean Sciences
GEO Directorate for Geosciences

Start Date:
October 1, 2010

Expires:
September 30, 2013 (Estimated)

Awarded Amount to Date:
$424793

Investigator(s):
Eric Sanford edsanford@ucdavis.edu (Principal Investigator)
Ann Russell (Co-Principal Investigator)
Brian Gaylord (Co-Principal Investigator)
Tessa Hill (Co-Principal Investigator)

Sponsor:
University of California-Davis
OR/Sponsored Programs
Davis, CA 95618 530/754-7000

NSF Program(s):
CRI-OA

More information.

0 Responses to “Acclimation and adaptation to ocean acidification of key ecosystem components in the California Current System”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,439,858 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives