Submarine venting of liquid carbon dioxide on a Mariana Arc volcano

Lupton, J., et al. (2006), Submarine venting of liquid carbon dioxide on a Mariana Arc volcano, Geochem. Geophys. Geosyst., 7, Q08007, doi:10.1029/2005GC001152.

Article

Although CO2 is generally the most abundant dissolved gas found in submarine hydrothermal fluids, it is rarely found in the form of CO2 liquid. Here we report the discovery of an unusual CO2-rich hydrothermal system at 1600-m depth near the summit of NW Eifuku, a small submarine volcano in the northern Mariana Arc. The site, named Champagne, was found to be discharging two distinct fluids from the same vent field: a 103°C gas-rich hydrothermal fluid and cold (<4°C) droplets composed mainly of liquid CO2. The hot vent fluid contained up to 2.7 moles/kg CO2, the highest ever reported for submarine hydrothermal fluids. The liquid droplets were composed of ∼98% CO2, ∼1% H2S, with only trace amounts of CH4 and H2. Surveys of the overlying water column plumes indicated that the vent fluid and buoyant CO2 droplets ascended <200 m before dispersing into the ocean. Submarine venting of liquid CO2 has been previously observed at only one other locality, in the Okinawa Trough back-arc basin (Sakai et al., 1990a), a geologic setting much different from NW Eifuku, which is a young arc volcano. The discovery of such a high CO2 flux at the Champagne site, estimated to be about 0.1% of the global MOR carbon flux, suggests that submarine arc volcanoes may play a larger role in oceanic carbon cycling than previously realized. The Champagne field may also prove to be a valuable natural laboratory for studying the effects of high CO2 concentrations on marine ecosystems.

0 Responses to “Submarine venting of liquid carbon dioxide on a Mariana Arc volcano”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,439,319 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives