Environment influences coral’s resilience to acidification

Postdoctoral researcher Kristen Brown (above) collected coral samples from a reef slope to see how they fared in acidic conditions. (Image: Courtesy of Kristen Brown)

Overreliance on fossil fuels has led to a buildup of greenhouse gasses like carbon dioxide (CO2) in the atmosphere. But CO2 doesn’t only stay in the air; it also dissolves into the ocean, where it decreases the pH of the water and leads to ocean acidification. Corals are especially vulnerable to damage from ocean acidification, and rising CO2 levels jeopardize the future of coral reefs globally. However, a new study from researchers at the University of Pennsylvania and Australia’s University of Queensland, reports certain corals may do better than others at withstanding ocean acidification.

The study was published in Proceedings of the Royal Society B. Using samples from the Great Barrier Reef, the researchers studied how coral from environments with greater CO2 variability respond to increasing acidification.

Ocean acidification threatens coral because it breaks down the rocky, calcified skeletons that give coral its distinctive structure, says Katie Barott, an assistant professor of biology in Penn’s School of Arts & Sciences and senior author on the study. When water CO2 levels surge, corals can no longer grow or maintain their skeletons.

While ocean acidification is a consequence of climate change, there are also regular fluctuations in water pH that occur regardless of greenhouse gas emission levels. These fluctuations are driven by respiration from the coral and photosynthesis from the coral’s symbiotic algae.


Marilyn Perkins, PennToday, 26 September 2022. Press release.

  • Reset


OA-ICC Highlights

%d bloggers like this: