Posts Tagged 'viruses'

Virioplankton and bacterioplankton in a shallow CO2-dominated hydrothermal vent (Panarea Island, Tyrrhenian Sea)

Gas hydrothermal vents are used as a natural analogue for studying the effects of CO2 leakage from hypothetical shallow marine storage sites on benthic and pelagic systems. This study investigated the interrelationships between planktonic prokaryotes and viruses in the Panarea Islands hydrothermal system (southern Tyrrhenian Sea, Italy), especially their abundance, distribution and diversity. No difference in prokaryotic abundance was shown between high-CO2 and control sites. The community structure displayed differences between fumarolic field and the control, and between surface and bottom waters, the latter likely due to the presence of different water masses. Bacterial assemblages were qualitatively dominated by chemo- and photoautotrophic organisms, able to utilise both CO2 and H2S for their metabolic requirements. From significantly lower virioplankton abundance in the proximity of the exhalative area together with particularly low Virus-to-Prokaryotes Ratio, we inferred a reduced impact on prokaryotic abundance and proliferation. Even if the fate of viruses in this particular condition remains still unknown, we consider that lower viral abundance could reflect in enhancing the energy flow to higher trophic levels, thus largely influencing the overall functioning of the system. Continue reading ‘Virioplankton and bacterioplankton in a shallow CO2-dominated hydrothermal vent (Panarea Island, Tyrrhenian Sea)’

Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning

The ocean absorbs about 25% of anthropogenic CO2 emissions, which alters its chemistry. Among the changes of the carbonate system are an increase in the partial pressure of CO2 (pCO2) and a decline of pH; hence, the whole process is often referred to as ‘ocean acidification’. Many microbial processes can be affected either directly or indirectly via a cascade of effects through the response of non-microbial groups and/or through changes in seawater chemistry. We briefly review the current understanding of the impact of ocean acidification on microbial diversity and processes, and highlight the gaps that need to be addressed in future research. The focus is on Bacteria, Archaea, viruses and protistan grazers but also includes total primary production of phytoplankton as well as species composition of eukaryotic phytoplankton. Some species and communities exhibit increased primary production at elevated pCO2. In contrast to their heterocystous counterparts, nitrogen fixation by non-heterocystous cyanobacteria is stimulated by elevated pCO2. The experimental data on the response of prokaryotic production to ocean acidification are not consistent. Very few other microbial processes have been investigated at environmentally relevant pH levels. The potential for microbes to adapt to ocean acidification, at either the species level by genetic change or at the community level through the replacement of sensitive species or groups by non- or less sensitive ones, is completely unknown. Consequently, the impact of ocean acidification on keystone species and microbial diversity needs to be elucidated. Most experiments used a short-term perturbation approach by using cultured organisms; few were conducted in mesocosms and none in situ. There is likely a lot to be learned from observations in areas naturally enriched with CO2, such as vents, upwelling and near-shore areas.
Continue reading ‘Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,417,509 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives