Posts Tagged 'regional'

A risk-based approach to evaluating northeast US fish community vulnerability to climate change

Risk assessment methods are used worldwide to evaluate threats posed by fisheries and other impacts on living marine resources, and to prioritize management of these threats. We derive a simplified risk analysis for aggregate fish communities as a preliminary tool to identify priorities for further detailed assessment. Because some of the largest observed rates of sea surface temperature increase are on the northeast US continental shelf, we focused on climate change-driven risks to marine communities in this region. We evaluated climate vulnerability for six communities across two ecosystems: both commercial and non-commercial demersal fish, pelagic fish, and benthic invertebrates in the Gulf of Maine (GOM) and Mid-Atlantic bight (MAB). We first evaluated the probability that anticipated climate changes (e.g. warming water, decreased salinity, increased acidity, altered boundary currents) would occur in these regions, and rated the potential severity of change over the next 10 years. Then, we evaluated the sensitivity of each biological community in each region using 12 attributes (e.g. habitat and prey specificity, temperature and acidity sensitivity, larval dispersal, adult mobility, population productivity, etc.). Exposure to the key climate risks was related to community sensitivity in each region for an overall assessment of climate vulnerability. Climate risks from increased surface water temperature, sea level rise, and earlier spring were rated moderate to high in both regions, with additional moderate to high risks in the GOM from increased bottom temperature, stratification, and river inputs. Benthic invertebrates were rated most sensitive, with demersals intermediate and pelagics lowest. Two MAB communities were rated more sensitive than corresponding GOM communities, but greater short-term climate risks in the GOM indicated increased exposure for GOM communities. Overall, this simple analysis may help prioritize short-term regional climate risk management action, thus addressing key conditions related to fishery fluctuations beyond fishing itself.

Continue reading ‘A risk-based approach to evaluating northeast US fish community vulnerability to climate change’

Exploring the potential effects of climate change on the Western Scotian Shelf ecosystem, Canada

Climate change is expected to cause profound changes in marine ecosystems that will vary in magnitude and effect among regions. We explore the potential effects of climate change on the western Scotian Shelf ecosystem in eastern Canada using an ecosystem model and two scenarios of climatic changes. The model includes the effects of temperature, pH, oxygen, decreased primary productivity and change in zooplankton size structure. These factors had differential, and sometimes opposing additive effects on the functional groups and species. The results also illustrate how the effects of climate change can be further enhanced or ameliorated by predator-prey interactions. At the individual species or functional group level, some effects were negligible, but at the ecosystem level, the combined predicted effect of climate change on the western Scotian shelf led to a reduction in biomass of 19% to 29% with an associated decrease in catches of 20% and 22%. Dramatic declines in biomass due to climate drivers could be alleviated in part by a 50% decrease in exploitation rate.
Continue reading ‘Exploring the potential effects of climate change on the Western Scotian Shelf ecosystem, Canada’

Heterogeneity of impacts of high CO2 on the North Western European Shelf (update)

The increase in atmospheric CO2 is a dual threat to the marine environment: from one side it drives climate change, leading to modifications in water temperature, circulation patterns and stratification intensity; on the other side it causes a decrease in marine pH (ocean acidification, or OA) due to the increase in dissolved CO2. Assessing the combined impact of climate change and OA on marine ecosystems is a challenging task. The response of the ecosystem to a single driver can be highly variable and remains still uncertain; additionally the interaction between these can be either synergistic or antagonistic. In this work we use the coupled oceanographic–ecosystem model POLCOMS-ERSEM driven by climate forcing to study the interaction between climate change and OA. We focus in particular on carbonate chemistry, primary and secondary production. The model has been run in three different configurations in order to assess separately the impacts of climate change on net primary production and of OA on the carbonate chemistry, which have been strongly supported by scientific literature, from the impact of biological feedbacks of OA on the ecosystem, whose uncertainty still has to be well constrained. The global mean of the projected decrease of pH at the end of the century is about 0.27 pH units, but the model shows significant interaction among the drivers and high variability in the temporal and spatial response. As a result of this high variability, critical tipping point can be locally and/or temporally reached: e.g. undersaturation with respect to aragonite is projected to occur in the deeper part of the central North Sea during summer. Impacts of climate change and of OA on primary and secondary production may have similar magnitude, compensating in some area and exacerbating in others.
Continue reading ‘Heterogeneity of impacts of high CO2 on the North Western European Shelf (update)’

Regional variability of acidification in the Arctic: a sea of contrasts (update)

The Arctic Ocean is a region that is particularly vulnerable to the impact of ocean acidification driven by rising atmospheric CO2, with potentially negative consequences for calcifying organisms such as coccolithophorids and foraminiferans. In this study, we use an ocean-only general circulation model, with embedded biogeochemistry and a comprehensive description of the ocean carbon cycle, to study the response of pH and saturation states of calcite and aragonite to rising atmospheric pCO2 and changing climate in the Arctic Ocean. Particular attention is paid to the strong regional variability within the Arctic, and, for comparison, simulation results are contrasted with those for the global ocean. Simulations were run to year 2099 using the RCP8.5 (an Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) scenario with the highest concentrations of atmospheric CO2). The separate impacts of the direct increase in atmospheric CO2 and indirect effects via impact of climate change (changing temperature, stratification, primary production and freshwater fluxes) were examined by undertaking two simulations, one with the full system and the other in which atmospheric CO2 was prevented from increasing beyond its preindustrial level (year 1860). Results indicate that the impact of climate change, and spatial heterogeneity thereof, plays a strong role in the declines in pH and carbonate saturation (Ω) seen in the Arctic. The central Arctic, Canadian Arctic Archipelago and Baffin Bay show greatest rates of acidification and Ω decline as a result of melting sea ice. In contrast, areas affected by Atlantic inflow including the Greenland Sea and outer shelves of the Barents, Kara and Laptev seas, had minimal decreases in pH and Ω because diminishing ice cover led to greater vertical mixing and primary production. As a consequence, the projected onset of undersaturation in respect to aragonite is highly variable regionally within the Arctic, occurring during the decade of 2000–2010 in the Siberian shelves and Canadian Arctic Archipelago, but as late as the 2080s in the Barents and Norwegian seas. We conclude that, for future projections of acidification and carbonate saturation state in the Arctic, regional variability is significant and needs to be adequately resolved, with particular emphasis on reliable projections of the rates of retreat of the sea ice, which are a major source of uncertainty.
Continue reading ‘Regional variability of acidification in the Arctic: a sea of contrasts (update)’

Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition

Seawater acidification can be induced both by absorption of atmospheric carbon dioxide (CO2) and by atmospheric deposition of sulfur and nitrogen oxides and ammonia. Their relative significance, interplay and dependency on water-column biogeochemistry are not well understood. Using a simple biogeochemical model we show that the initial conditions of coastal systems are not only relevant for CO2-induced acidification, but also for additional acidification due to atmospheric acid deposition. Coastal areas undersaturated with respect to CO2 are most vulnerable to CO2-induced acidification, but are relatively least affected by additional atmospheric deposition-induced acidification. In contrast, the pH of CO2-supersaturated systems is most sensitive to atmospheric deposition. The projected increment in atmospheric CO2 by 2100 will increase the sensitivity of coastal systems to atmospheric deposition-induced acidification by up to a factor 4, but the additional annual change in proton concentration is at most 28%.
Continue reading ‘Biogeochemical context impacts seawater pH changes resulting from atmospheric sulfur and nitrogen deposition’

Biogeochemical control of the coupled CO2–O2 system of the Baltic Sea: a review of the results of Baltic-C

Past, present, and possible future changes in the Baltic Sea acid–base and oxygen balances were studied using different numerical experiments and a catchment–sea model system in several scenarios including business as usual, medium scenario, and the Baltic Sea Action Plan. New CO2 partial pressure data provided guidance for improving the marine biogeochemical model. Continuous CO2 and nutrient measurements with high temporal resolution helped disentangle the biogeochemical processes. These data and modeling indicate that traditional understandings of the nutrient availability–organic matter production relationship do not necessarily apply to the Baltic Sea. Modeling indicates that increased nutrient loads will not inhibit future Baltic Sea acidification; instead, increased mineralization and biological production will amplify the seasonal surface pH cycle. The direction and magnitude of future pH changes are mainly controlled by atmospheric CO2 concentration. Apart from decreasing pH, we project a decreasing calcium carbonate saturation state and increasing hypoxic area.

Continue reading ‘Biogeochemical control of the coupled CO2–O2 system of the Baltic Sea: a review of the results of Baltic-C’

Quantifying and valuing potential climate change impacts on coral reefs in the United States: comparison of two scenarios

The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output) to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a “business as usual” (BAU) greenhouse gas (GHG) emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers’ recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated “avoided loss” from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100.
Continue reading ‘Quantifying and valuing potential climate change impacts on coral reefs in the United States: comparison of two scenarios’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 976,191 hits


Ocean acidification in the IPCC AR5 WG II

OUP book