Posts Tagged 'mutliple factors'

Grazers increase the sensitivity of coralline algae to ocean acidification and warming

Highlights

  • Stimulation of the primary production and calcification of corallines by grazing
  • Different response of maerl between winter and summer conditions
  • High vulnerability of corallines to ocean acidification in the presence of grazers

Abstract

Coralline algae are expected to be adversely impacted by ocean acidification and warming. Most research on these algae has involved experiments on isolated species, without considering species interactions, such as grazing. This myopic view is challenging because the impact of climate change on coralline algae will depend on the direct impacts on individual coralline species and the indirect effects of altered interactions with other species. Here, we tested the influence of grazing on the response of the coralline alga Lithothamnion corallioides to near-future ocean acidification and warming. Two three-month experiments were performed in the winter and summer seasons in mesocosms under crossed conditions of pCO2 (ambient and high pCO2) and temperature (ambient and +3 °C) in the presence and absence of grazers. In the winter, L. corallioides photosynthesis decreased with rising temperature in the presence of grazers, while calcification increased. It is likely that increased calcification may act as a structural protection to prevent damage from grazing. However, increasing calcification rates in the presence of grazers may be detrimental to other physiological processes, such as photosynthesis. In the summer, L. corallioides primary production, respiration, and calcification were higher in the presence of grazers than in their absence. Light calcification rates were reduced under high pCO2 in the presence of grazers only. Moreover, dark calcification rates were more adversely affected by pCO2 increase in the presence of grazers. Through their feeding activity, grazers may alter the structural integrity of thalli and increase the sensitivity of coralline algae to ocean acidification. Our results indicate that both season and grazing play a key role in the response of L. corallioides to acidification and warming. Seasonal variations and species interactions are thus critical to consider to make ecologically relevant predictions of the effects of future environmental changes.

Continue reading ‘Grazers increase the sensitivity of coralline algae to ocean acidification and warming’

Elevated pCO2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes

Ocean acidification (OA) is predicted to reduce reef coral calcification rates and threaten the long-term growth of coral reefs under climate change. Reduced coral growth at elevated pCO2 may be buffered by sufficiently high irradiances; however, the interactive effects of OA and irradiance on other fundamental aspects of coral physiology, such as the composition and energetics of coral biomass, remain largely unexplored. This study tested the effects of two light treatments (7.5 versus 15.7 mol photons m−2 d−1) at ambient or elevated pCO2 (435 versus 957 µatm) on calcification, photopigment and symbiont densities, biomass reserves (lipids, carbohydrates, proteins), and biomass energy content (kJ) of the reef coral Pocillopora acuta from Kāne‘ohe Bay, Hawai‘i. While pCO2 and light had no effect on either area- or biomass-normalized calcification, tissue lipids gdw−1 and kJ gdw−1 were reduced 15% and 14% at high pCO2, and carbohydrate content increased 15% under high light. The combination of high light and high pCO2 reduced protein biomass (per unit area) by approximately 20%. Thus, under ecologically relevant irradiances, P. acuta in Kāne‘ohe Bay does not exhibit OA-driven reductions in calcification reported for other corals; however, reductions in tissue lipids, energy content and protein biomass suggest OA induced an energetic deficit and compensatory catabolism of tissue biomass. The null effects of OA on calcification at two irradiances support a growing body of work concluding some reef corals may be able to employ compensatory physiological mechanisms that maintain present-day levels of calcification under OA. However, negative effects of OA on P. acuta biomass composition and energy content may impact the long-term performance and scope for growth of this species in a high pCO2 world.

Continue reading ‘Elevated pCO2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes’

Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants

I summarize marine studies on plastic versus adaptive responses to global change. Due to the lack of time series, this review focuses largely on the potential for adaptive evolution in marine animals and plants. The approaches were mainly synchronic comparisons of phenotypically divergent populations, substituting spatial contrasts in temperature or CO2 environments for temporal changes, or in assessments of adaptive genetic diversity within populations for traits important under global change. The available literature is biased towards gastropods, crustaceans, cnidarians and macroalgae. Focal traits were mostly environmental tolerances, which correspond to phenotypic buffering, a plasticity type that maintains a functional phenotype despite external disturbance. Almost all studies address coastal species that are already today exposed to fluctuations in temperature, pH and oxygen levels. Recommendations for future research include (i) initiation and analyses of observational and experimental temporal studies encompassing diverse phenotypic traits (including diapausing cues, dispersal traits, reproductive timing, morphology) (ii) quantification of nongenetic trans-generational effects along with components of additive genetic variance (iii) adaptive changes in microbe–host associations under the holobiont model in response to global change (iv) evolution of plasticity patterns under increasingly fluctuating environments and extreme conditions and (v) joint consideration of demography and evolutionary adaptation in evolutionary rescue approaches.

Continue reading ‘Climate change in the oceans: evolutionary versus phenotypically plastic responses of marine animals and plants’

Threats to ultraoligotrophic marine ecosystems

Ocean acidification is discussed in Section 3 of this book chapter.

Continue reading ‘Threats to ultraoligotrophic marine ecosystems’

Formation and maintenance of high-nitrate, low pH layers in the Eastern Indian Ocean and the role of nitrogen fixation

We investigate the biogeochemistry of Low Dissolved Oxygen High Nitrate layers forming against the backdrop of several interleaving regional water masses in the Eastern Indian Ocean, off northwest Australia adjacent to Ningaloo Reef. These water masses, including the forming Leeuwin Current, have been shown directly to impact the ecological function of Ningaloo Reef and other iconic coastal habitats downstream. Our results indicate that LODHN layers are formed from multiple subduction events of the Eastern Gyral Current beneath the Leeuwin Current (LC); the LC originates from both the Indonesian Throughflow and tropical Indian Ocean. Density differences of up to 0.025 kg m−3 between the Eastern Gyral Current and the Leeuwin Current produce sharp gradients that can trap high concentrations of particles (measured as low transmission) along the density interfaces. The oxidation of the trapped particulate matter results in local depletion of dissolved oxygen and regeneration of dissolved nitrate (nitrification). We document an associated increase in total dissolved carbon dioxide, which lowers the seawater pH by 0.04 units. Based on isotopic measurements (δ15N and δ18O) of dissolved nitrate, we determine that ∼40–100% of the nitrate found in LODHN layers is likely to originate from nitrogen fixation, and that regionally, the importance of N fixation in contributing to LODHN layers is likely be highest at the surface and offshore.

Continue reading ‘Formation and maintenance of high-nitrate, low pH layers in the Eastern Indian Ocean and the role of nitrogen fixation’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,264,980 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book