Posts Tagged 'multiple factors'



Organ health and development in larval kingfish are unaffected by ocean acidification and warming

Anthropogenic CO2 emissions are causing global ocean warming and ocean acidification. The early life stages of some marine fish are vulnerable to elevated ocean temperatures and CO2 concentrations, with lowered survival and growth rates most frequently documented. Underlying these effects, damage to different organs has been found as a response to elevated CO2 in larvae of several species of marine fish, yet the combined effects of acidification and warming on organ health are unknown. Yellowtail kingfish, Seriola lalandi, a circumglobal subtropical pelagic fish of high commercial and recreational value, were reared from fertilization under control (21 °C) and elevated (25 °C) temperature conditions fully crossed with control (500 µatm) and elevated (1,000 µatm) pCO2 conditions. Larvae were sampled at 11 days and 21 days post hatch for histological analysis of the eye, gills, gut, liver, pancreas, kidney and liver. Previous work found elevated temperature, but not elevated CO2, significantly reduced larval kingfish survival while increasing growth and developmental rate. The current histological analysis aimed to determine whether there were additional sublethal effects on organ condition and development and whether underlying organ damage could be responsible for the documented effects of temperature on survivorship. While damage to different organs was found in a number of larvae, these effects were not related to temperature and/or CO2 treatment. We conclude that kingfish larvae are generally vulnerable during organogenesis of the digestive system in their early development, but that this will not be exacerbated by near-future ocean warming and acidification.

Continue reading ‘Organ health and development in larval kingfish are unaffected by ocean acidification and warming’

Ocean acidification changes the vertical movement of stone crab larvae

Anthropogenic activities are increasing ocean temperature and decreasing ocean pH. Some coastal habitats are experiencing increases in organic runoff, which when coupled with a loss of vegetated coastline can accelerate reductions in seawater pH. Marine larvae that hatch in coastal habitats may not have the ability to respond to elevated temperature and changes in seawater pH. This study examined the response of Florida stone crab (Menippe mercenaria) larvae to elevated temperature (30°C control and 32°C treatment) and CO2-induced reductions in pH (8.05 pH control and 7.80 pH treatment). We determined whether those singular and simultaneous stressors affect larval vertical movement at two developmental stages. Geotactic responses varied between larval stages. The direction and rate of the vertical displacement of larvae were dependent on pH rather than temperature. Stage III larvae swam upwards under ambient pH conditions, but swam downwards at a faster rate under reduced pH. There was no observable change in the directional movement of Stage V larvae. The reversal in orientation by Stage III larvae may limit larval transport in habitats that experience reduced pH and could pose challenges for the northward dispersal of stone crabs as coastal temperatures warm.

Continue reading ‘Ocean acidification changes the vertical movement of stone crab larvae’

Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species

Made up of calcareous coralline algae, maerl beds play a major role as ecosystem engineers in coastal areas throughout the world. They undergo strong anthropogenic pressures, which may threaten their survival. The aim of this study was to gain insight into the future of maerl beds in the context of global and local changes. We examined the effects of rising temperatures (+3°C) and ocean acidification (−0.3 pH units) according to temperature and pH projections (i.e., the RCP 8.5 scenario), and nutrient (N and P) availability on three temperate maerl species (Lithothamnion corallioides, Phymatolithon calcareum, and Lithophyllum incrustans) in the laboratory in winter and summer conditions. Physiological rates of primary production, respiration, and calcification were measured on all three species in each treatment and season. The physiological response of maerl to global climate change was species‐specific and influenced by seawater nutrient concentrations. Future temperature–pH scenario enhanced maximal gross primary production rates in P. calcareum in winter and in L. corallioides in both seasons. Nevertheless, both species suffered an impairment of light harvesting and photoprotective mechanisms in winter. Calcification rates at ambient light intensity were negatively affected by the future temperature–pH scenario in winter, with net dissolution observed in the dark in L. corallioides and P. calcareum under low nutrient concentrations. Nutrient enrichment avoided dissolution under future scenarios in winter and had a positive effect on L. incrustans calcification rate in the dark in summer. In winter conditions, maximal calcification rates were enhanced by the future temperature–pH scenario on the three species, but P. calcareum suffered inhibition at high irradiances. In summer conditions, the maximal calcification rate dropped in L. corallioides under the future global climate change scenario, with a potential negative impact on CaCO3 budget for maerl beds in the Bay of Brest where this species is dominant. Our results highlight how local changes in nutrient availability or irradiance levels impact the response of maerl species to global climate change and thus point out how it is important to consider other abiotic parameters in order to develop management policies capable to increase the resilience of maerl beds under the future global climate change scenario.

Continue reading ‘Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species’

The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum

Carbon nanomaterials (CNM), such as graphene oxide (GO), have been the focus of study in several areas of science mostly due to their physical-chemical properties. However, data concerning the potential toxic effects of these CNM in bivalves are still scarce. When present in the aquatic systems, the combination with other contaminants, as well as pH environmental variations, can influence the behavior of these nanomaterials and, consequently, their toxicity. Thus, the main goal of this study was to evaluate the effect of exposure of clam Ruditapes philippinarum to GO when acting alone and in the combination with copper (Cu), under two pH levels (control 7.8 and 7.3). A 28-day exposure was performed and metabolism and oxidative stress-related parameters were evaluated. The effects caused by GO and Cu exposures, either isolated or co-exposed, showed a direct and dependent relationship with the pH in which the organisms were exposed. In clams maintained at control pH (7.8), Cu and GO + Cu treatments showed lower lipid peroxidation (LPO) and lower electron transport system (ETS) activity, respectively. In clams maintained at low pH, glutathione-S-transferases (GSTs) activities were increased in Cu and Cu + GO treatments, whereas reduced glutathione (GSH) levels were increased in Cu treatment and ETS activity was higher in GO + Cu. Thus, it can be observed that clams responses to Cu and GO were strongly modulated by pH in terms of their defense system and energy production, although this does not result into higher LPO levels.

Continue reading ‘The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum’

Elevated CO2 and heatwave conditions affect the aerobic and swimming performance of juvenile Australasian snapper

As climate change advances, coastal marine ecosystems are predicted to experience increasingly frequent and intense heatwaves. At the same time, already variable CO2 levels in coastal habitats will be exacerbated by ocean acidification. High temperature and elevated CO2 levels can be stressful to marine organisms, especially during critical early life stages. Here, we used a fully cross-factored experiment to test the effects of simulated heatwave conditions (+ 4 °C) and elevated CO2 (1000 µatm) on the aerobic physiology and swimming performance of juvenile Australasian snapper, Chrysophrys auratus, an ecologically and economically important mesopredatory fish. Both elevated temperature and elevated CO2 increased resting metabolic rate of juvenile snapper, by 21–22% and 9–10%, respectively. By contrast, maximum metabolic rate was increased by elevated temperature (16–17%) and decreased by elevated CO2 (14–15%). The differential effects of elevated temperature and elevated CO2 on maximum metabolic rate resulted in aerobic scope being reduced only in the elevated CO2 treatment. Critical swimming speed also increased with elevated temperature and decreased with elevated CO2, matching the results for maximum metabolic rate. Periods of elevated CO2 already occur in the coastal habitats occupied by juvenile snapper, and these events will be exacerbated by ongoing ocean acidification. Our results show that elevated CO2 has a greater effect on metabolic rates and swimming performance than heatwave conditions for juvenile snapper, and could reduce their overall performance and potentially have negative consequences for population recruitment.

Continue reading ‘Elevated CO2 and heatwave conditions affect the aerobic and swimming performance of juvenile Australasian snapper’

Diel and tidal pCO2 × O2 fluctuations provide physiological refuge to early life stages of a coastal forage fish

Coastal ecosystems experience substantial natural fluctuations in pCO2 and dissolved oxygen (DO) conditions on diel, tidal, seasonal and interannual timescales. Rising carbon dioxide emissions and anthropogenic nutrient input are expected to increase these pCO2 and DO cycles in severity and duration of acidification and hypoxia. How coastal marine organisms respond to natural pCO2 × DO variability and future climate change remains largely unknown. Here, we assess the impact of static and cycling pCO2 × DO conditions of various magnitudes and frequencies on early life survival and growth of an important coastal forage fish, Menidia menidia. Static low DO conditions severely decreased embryo survival, larval survival, time to 50% hatch, size at hatch and post-larval growth rates. Static elevated pCO2 did not affect most response traits, however, a synergistic negative effect did occur on embryo survival under hypoxic conditions (3.0 mg L−1). Cycling pCO2 × DO, however, reduced these negative effects of static conditions on all response traits with the magnitude of fluctuations influencing the extent of this reduction. This indicates that fluctuations in pCO2 and DO may benefit coastal organisms by providing periodic physiological refuge from stressful conditions, which could promote species adaptability to climate change.

Continue reading ‘Diel and tidal pCO2 × O2 fluctuations provide physiological refuge to early life stages of a coastal forage fish’

Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima

Elevated temperature and decreased ocean pH (ocean acidification) are associated with anthropogenic climate change and can adversely affect fertilization and development in marine invertebrates. However, the potential synergistic impact of these stressors on fertilization success remains unresolved for many ecologically and economically important species including giant clams of the genus Tridacna. Individual and interactive effects of warming and acidification on fertilization (successful first cleavage) were investigated in the small giant clam, Tridacna maxima. Experiments were performed on gametes of T. maxima (collected in October 2015 from the island of Moorea, French Polynesia; 17.54° S, 149.83° W) fertilized under ambient conditions (27 °C, pH 8.1) and under conditions congruent with temperature and pH projections for the coming century (31 °C, pH 7.6). Fertilization success was low, but within previously reported levels, under ambient conditions (47.7 ± 3.4%) and was significantly reduced at elevated temperature per se and in combination with lowered pH (18.5 ± 4.4% and 21.2 ± 4.6%, respectively). However, acidification alone had no effect on fertilization success in T. maxima (48.2 ± 3.1%). These results indicate that although fertilization in T. maxima is resilient to lowered pH, it is strongly inhibited by elevated temperature. Populations of T. maxima may, therefore, be at risk of low reproductive success over the coming century as a result of rising ocean temperature.

Continue reading ‘Elevated temperature, but not acidification, reduces fertilization success in the small giant clam, Tridacna maxima’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,315,231 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book