Posts Tagged 'Mediterranean Sea'

Ocean acidification induces changes in virus–host relationships in Mediterranean benthic ecosystems

Acidified marine systems represent “natural laboratories”, which provide opportunities to investigate the impacts of ocean acidification on different living components, including microbes. Here, we compared the benthic microbial response in four naturally acidified sites within the Southern Tyrrhenian Sea characterized by different acidification sources (i.e., CO2 emissions at Ischia, mixed gases at Panarea and Basiluzzo and acidified freshwater from karst rocks at Presidiana) and pH values. We investigated prokaryotic abundance, activity and biodiversity, viral abundance and prokaryotic infections, along with the biochemical composition of the sediment organic matter. We found that, despite differences in local environmental dynamics, viral life strategies change in acidified conditions from mainly lytic to temperate lifestyles (e.g., chronic infection), also resulting in a lowered impact on prokaryotic communities, which shift towards (chemo)autotrophic assemblages, with lower organic matter consumption. Taken together, these results suggest that ocean acidification exerts a deep control on microbial benthic assemblages, with important feedbacks on ecosystem functioning.

Continue reading ‘Ocean acidification induces changes in virus–host relationships in Mediterranean benthic ecosystems’

Potential of maritime transport for ocean liming and atmospheric CO2 removal

Proposals to increase ocean alkalinity may make an important contribution to meeting climate change net emission targets, while also helping to ameliorate the effects of ocean acidification. However, the practical feasibility of spreading large amounts of alkaline materials in the seawater is poorly understood. In this study, the potential of discharging calcium hydroxide (slaked lime, SL) using existing maritime transport is evaluated, at the global scale and for the Mediterranean Sea. The potential discharge of SL from existing vessels depends on many factors, mainly their number and load capacity, the distance traveled along the route, the frequency of reloading, and the discharge rate. The latter may be constrained by the localized pH increase in the wake of the ship, which could be detrimental for marine ecosystems. Based on maritime traffic data from the International Maritime Organization for bulk carriers and container ships, and assuming low discharge rates and 15% of the deadweight capacity dedicated for SL transport, the maximum SL potential discharge from all active vessels worldwide is estimated to be between 1.7 and 4.0 Gt/year. For the Mediterranean Sea, based on detailed maritime traffic data, a potential discharge of about 186 Mt/year is estimated. The discharge using a fleet of 1,000 new dedicated ships has also been discussed, with a potential distribution of 1.3 Gt/year. Using average literature values of CO2 removal per unit of SL added to the sea, the global potential of CO2 removal from SL discharge by existing or new ships is estimated at several Gt/year, depending on the discharge rate. Since the potential impacts of SL discharge on the marine environment in the ships’ wake limits the rate at which SL can be applied, an overview of methodologies for the assessment of SL concentration in the wake of the ships is presented. A first assessment performed with a three-dimensional non-reactive and a one-dimensional reactive fluid dynamic model simulating the shrinking of particle radii, shows that low discharge rates of a SL slurry lead to pH variations of about 1 unit for a duration of just a few minutes.

Continue reading ‘Potential of maritime transport for ocean liming and atmospheric CO2 removal’

Carbonate chemistry and temperature dynamics in an alga dominated habitat

Recent works have begun to explore the magnitude and frequency of localized changes in seawater chemistry in shallow water systems, where the effects of warming and acidification are still unpredictable. In a Mediterranean shallow coastal site, we empirically characterized the diel, seasonal, and annual pattern of pH, temperature, and associated chemical changes on one Ellisolandia elongata ‘corniche’, (i.e. a coastal algal biogenic reef). Local benthic metabolism together with temperature, were two of the main drivers for the carbonate system variation over diel and seasonal cycles. During the 12-month study, a total of seven heatwave events were recorded (two of which occurred in winter) with the longest lasting 11 days. The present study highlights the importance of improving the knowledge of changes and dynamics occurring at local scale, by extending in situ data acquisition at shallow coastal sites, in order to better assess the impacts of climate change on both environment and ecosystems.

Continue reading ‘Carbonate chemistry and temperature dynamics in an alga dominated habitat’

Impact of dust addition on the metabolism of Mediterranean plankton communities and carbon export under present and future conditions of pH and temperature

Although atmospheric dust fluxes from arid as well as human-impacted areas represent a significant source of nutrients to surface waters of the Mediterranean Sea, studies focusing on the evolution of the metabolic balance of the plankton community following a dust deposition event are scarce and none were conducted in the context of projected future levels of temperature and pH. Moreover, most of the experiments took place in coastal areas. In the framework of the PEACETIME project, three dust-addition perturbation experiments were conducted in 300-L tanks filled with surface seawater collected in the Tyrrhenian Sea (TYR), Ionian Sea (ION) and in the Algerian basin (FAST) onboard the R/V “Pourquoi Pas?” in late spring 2017. For each experiment, six tanks were used to follow the evolution of chemical and biological stocks, biological activity and particle export. The impacts of a dust deposition event simulated at their surface were followed under present environmental conditions and under a realistic climate change scenario for 2100 (ca. +3 °C and −0.3 pH units). The tested waters were all typical of stratified oligotrophic conditions encountered in the open Mediterranean Sea at this period of the year, with low rates of primary production and a metabolic balance towards net heterotrophy. The release of nutrients after dust seeding had very contrasting impacts on the metabolism of the communities, depending on the station investigated. At TYR, the release of new nutrients was followed by a negative impact on both particulate and dissolved 14C-based production rates, while heterotrophic bacterial production strongly increased, driving the community to an even more heterotrophic state. At ION and FAST, the efficiency of organic matter export due to mineral/organic aggregation processes was lower than at TYR likely related to a lower quantity/age of dissolved organic matter present at the time of the seeding. At these stations, both the autotrophic and heterotrophic community benefited from dust addition, with a stronger relative increase in autotrophic processes observed at FAST. Our study showed that the potential positive impact of dust deposition on primary production depends on the initial composition and metabolic state of the investigated community. This potential is constrained by the quantity of nutrients added in order to sustain both the fast response of heterotrophic prokaryotes and the delayed one of primary producers. Finally, under future environmental conditions, heterotrophic metabolism was overall more impacted than primary production, with the consequence that all integrated net community production rates decreased with no detectable impact on carbon export, therefore reducing the capacity of surface waters to sequester anthropogenic CO2.

Continue reading ‘Impact of dust addition on the metabolism of Mediterranean plankton communities and carbon export under present and future conditions of pH and temperature’

Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France)

A carbonate chemistry balance module was implemented into a biogeochemical model of the planktonic food web. The model, named Eco3M-CarbOx, includes 22 state variables that are dispatched into 5 compartments: phytoplankton, heterotrophic bacteria, detrital particulate organic matter, labile dissolved organic, and inorganic matter. This model is applied to and evaluated in the Bay of Marseille (BoM, France), which is a coastal zone impacted by the urbanized and industrialized Aix–Marseille Metropolis, and subject to significant increases in anthropogenic emissions of CO2. The model was evaluated over the year 2017, for which in situ data of the carbonate system are available in the study site. The biogeochemical state variables of the model only change with time, to represent the time evolution of a sea surface water cell in response to the implemented realistic forcing conditions. The model correctly simulates the value ranges and seasonal dynamics of most of the variables of the carbonate system except for the total alkalinity. Several numerical experiments were conducted to test the response of carbonate system to (i) a seawater temperature increase, (ii) wind events, (iii) Rhône River plume intrusions, and (iv) different levels of atmospheric CO2 contents. This set of numerical experiments shows that the Eco3M-CarbOx model provides expected responses in the alteration of the marine carbonate balance regarding each of the considered perturbation. When the seawater temperature changes quickly, the behavior of the BoM waters alters within a few days from a source of CO2 to the atmosphere to a sink into the ocean. Moreover, the higher the wind speed is, the higher the air–sea CO2 gas exchange fluxes are. The river intrusions with nitrate supplies lead to a decrease in the p CO2 value, favoring the conditions of a sink for atmospheric CO2 into the BoM. A scenario of high atmospheric concentrations of CO2 also favors the conditions of a sink for atmospheric CO2 into the waters of the BoM. Thus the model results suggest that external forcings have an important impact on the carbonate equilibrium in this coastal area.

Continue reading ‘Implementation and assessment of a carbonate system model (Eco3M-CarbOx v1.1) in a highly dynamic Mediterranean coastal site (Bay of Marseille, France)’

Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems

Ocean acidification (OA) is expected to impact habitat-forming species (HFS), with cascading effects on the whole marine ecosystem and related services that are seldom quantified. Here, the changes in HFSs biomass due to OA are modeled using a food web ecosystem model, and the trophic and non-trophic cascading effects on the marine community are investigated. The food web model represents a well-studied coastal marine protected area in the NW Mediterranean Sea where coralligenous reefs and Posidonia oceanica meadows constitute important HFS. The model is used to implement 5 scenarios of habitat degradation, that is, reduction of HFS biomass, induced by increasing OA and to quantify the potential changes in ecosystem properties and indicators of ecosystem services over the next 100 years. The changes in ecosystem indicators highlight a decrease in the size of the system and a reorganization of energy flows suggesting a high degree of ecosystem development. All the proxies for ecosystem services show significant decreases in their values. Although representing only a portion of the possible impacts of OA, the findings are consistent with the idea that ecological systems can react to OA effects to maintain the level of ecosystem development, but the new organization might not be optimal from an anthropocentric viewpoint.

Continue reading ‘Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems’

Alkalinization scenarios in the Mediterranean Sea for efficient removal of atmospheric CO2 and the mitigation of ocean acidification

It is now widely recognised that in order to reach the target of limiting global warming below 2 °C above pre-industrial levels (as the objective of the Paris agreement) there is the need for development and implementation of active Carbon Dioxide Removal (CDR) strategies. Relatively few studies have assessed the mitigation capacity of ocean-based Negative Emission Technologies (NET) and the feasibility of their implementation on a larger scale to support efficient implementation strategies of CDR. This study investigates the case of marine alkalinisation, which has the additional potential of contrasting the ongoing acidification resulting from increased uptake of atmospheric CO2 by the seas. More specifically, we present an analysis of ocean alkalinisation applied to the Mediterranean Sea taking into consideration the regional characteristics of the basin. Rather than using idealised spatially homogenous scenarios of alkalinisation as done in previous studies, we use a set of numerical simulations of alkalinisation based on current shipping routes to quantitatively assess the alkalinisation efficiency via a coupled physical-biogeochemical model over the next decades. Simulations suggest the potential of nearly doubling the carbon-dioxide uptake rate of the Mediterranean Sea after 30 years of alkalinisation, and of neutralising the mean surface acidification trend of the baseline scenario without alkalinisation over the same time span. These levels are achieved via two different strategies: a first approach applying constant annual discharge of 200Mt Ca(OH)2 over the alkalinisation period and a second approach with gradually increasing discharge proportional to the surface pH trend of the baseline scenario reaching similar amounts of annual discharge by the end of the alkalinisation period. We demonstrate that via the latter approach it is possible to stabilise the mean surface pH at present day values and substantially increase the potential to counteract acidification relative to the alkalinity added while the carbon uptake efficiency is only marginally reduced. Nevertheless, significant local alterations of the surface pH persist, calling for an investigation of the physiological and ecological implications of the extent of these alterations to the carbonate system in the short to medium term in order to support a safe, sustainable application of this CDR implementation.

Continue reading ‘Alkalinization scenarios in the Mediterranean Sea for efficient removal of atmospheric CO2 and the mitigation of ocean acidification’

Community responses of intertidal foraminifera to pH variations: a culture experiment with propagules

Calcifying organisms such as benthic foraminifera are susceptible to changes in ocean pH and alkalinity. Responses to these changes include variations in mortality, calcification rates or assemblage composition, which have been observed in field and experimental studies. Here we applied a growth experiment with benthic foraminiferal propagules under different pH conditions to gather insights into the effect of pH on the composition of grown assemblages. A homogeneous propagule assemblage from a local mudflat in Corfu Island (Greece) was exposed to a range of pH conditions (6.5, 7.2, 7.8 and 8.5) for 5 weeks. In a second experiment, the assemblages were first exposed to low and subsequently to high conditions for a total of 8 weeks. After termination of the experiments, we recorded high survivability and growth throughout the treatments. Analysis of the assemblage composition of the first experiments revealed a shift from porcelaneous dominated taxa in the higher pH treatments to an assemblage with higher numbers of agglutinated taxa in the lower pH treatments. Soft-shelled monothalamous species were common throughout. The second experiment revealed assemblages that were significantly dominated by porcelaneous taxa with monothalamous taxa being almost absent. The results of this study are congruent with other observations on changing assemblage compositions with changing pH from both laboratory and field studies. The fast response of the assemblages through activation of potentially dormant propagules adds insights into the mechanisms behind seasonal composition changes in naturally variable environments such as river estuaries. They also shed new light on possible effects of continuous decreases in ocean pH on shallow-water foraminiferal assemblages in future.

Continue reading ‘Community responses of intertidal foraminifera to pH variations: a culture experiment with propagules’

The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat

The impact of simulated seawater acidification and warming conditions on specimens of the mussel Mytilus galloprovincialis locally adapted to very distinct, widely separated sites in the Mediterranean Sea (Tunisia) and Atlantic Sea (Galicia, NW Spain) was evaluated in relation to key behavioral and eco-physiological parameters. Over the 2-month exposure to the experimental conditions, mussels were fed optimally to ensure that there are no synergistic interactions between climate change drivers and energetic status of the individuals. In general, regardless of origin (Atlantic or Mediterranean), the mussels were rather resilient to acidification for most of the parameters considered and they were able to grow in strongly acidified seawater through an increased feeding activity. However, shell strength decreased (40%) consistently in both mussel populations held in moderately and highly acidified seawater. The observed reduction in shell strength was not explained by slight alterations in organic matter, shell thickness or aragonite: calcite ratio. The combined effects of high acidification and warming on the key response of byssus strength caused a strong decline in mussel performance, although only in Galician mussels, in which the valve opening time decreased sharply as well as condition index (soft tissue state) and shell growth. By contrast, the observed negative effect of highly acidified scenario on the strength of Tunisian mussel shells was (partly but not totally) counterbalanced by the higher seawater temperature. Eco-physiological and behavioral interactions in mussels in relation to climate change are complex, and future scenarios for the ecology of the species and also the feasibility of cultivating them in Atlantic and Mediterranean zones are discussed.

Continue reading ‘The Mediterranean mussel Mytilus galloprovincialis: responses to climate change scenarios as a function of the original habitat’

Boosted fish abundance associated with Posidonia oceanica meadows in temperate shallow CO2 vents


  • Ocean acidification (OA) may induce shifts in the structure and function of coastal marine ecosystems
  • CO2 vents were used to assess the effects of OA on fish assemblages associated with Posidonia oceanica
  • Posidonia structure and associated fish assemblages were compared at vents and off-vents using underwater visual census
  • Posidonia density increases and fish show boosted abundance but not reduced diversity at vents
  • Mediterranean Posidonia fish assemblages may cope with OA under near-future acidification level


Ocean acidification (OA) may induce major shifts in the structure and function of coastal marine ecosystems. Studies in volcanic CO2 vents, where seawater is naturally acidified, have reported an overall simplification of fish assemblages structure, while some primary producers are likely to increase their biomass under elevated concentration of CO2. Here we used temperate shallow CO2 vents located around the coast of Ischia island (Italy) to assess the effects of OA on necto-benthic fish assemblages associated with the foundation seagrass species Posidonia oceanica in the Mediterranean Sea. We compared P. oceanica meadow structure, its epiphytic community and the associated fish assemblage structure and diversity at vents with low pH sites and reference sites with ambient pH using underwater visual census strip transects, in two seasons (fall 2018 and summer 2019). Data were analysed using both univariate and multivariate statistical techniques. Results showed greater P. oceanica habitat complexity (i.e. shoot density) and lower abundance of epiphytic calcareous species (e.g. coralline algae) at the vents than reference sites. Total abundance of adult and juvenile fish was higher at vents than reference sites, while no differences were found for species richness and composition. Overall, the herbivore Sarpa salpa stands out among the species contributing the most to dissimilarity between vents and reference sites, showing higher abundances under OA conditions. This pattern could be explained by the combined effect of a positive response to the higher structural meadows complexity and the greater seagrasses palatability / nutritional value occurring at the vents, which may help herbivores to withstand the higher energetic cost to live under high pCO2 / low pH conditions. Our results indicate that necto-benthic fish assemblages associated with the Mediterranean P. oceanica ecosystem may cope with OA under the CO2 emission scenarios forecasted for the end of this century.

Continue reading ‘Boosted fish abundance associated with Posidonia oceanica meadows in temperate shallow CO2 vents’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,442,163 hits


Ocean acidification in the IPCC AR5 WG II

OUP book