Posts Tagged 'Indian ocean'

Sea surface pCO2 variability and air-sea CO2 exchange in the coastal Sudanese Red Sea

Highlights

  • The full annual cycle of pCO2 is observed for first time in the western Red Sea.
  • The sea surface pCO2 has a seasonal amplitude of 70 μatm.
  • The seasonality of pCO2 is mainly driven by temperature and secondary by DIC and AT.
  • Over the year, the western Red Sea is a source for CO2 (0.18 mol CO2 m-2 y-1).
  • The western Red Sea is acting as a sink for CO2 during winter.

Abstract

The dynamics of sea surface pCO2 (pCO2w) and air-sea CO2 exchange of the Sudanese coastal Red Sea has for the first time been studied over a full annual cycle (October 2014 – October 2015) based on semi-continuous measurements from moored autonomous sensors. pCO2w showed a seasonal amplitude of approximately 70 μatm, overlaid by a high frequency (3-4 days) signal of around 10 μatm. The highest values, of about 440 μatm occurred during summer and fall, while the lowest values of about 370 μatm occurred during winter. The monthly pCO2w change was primarily driven by temperature, i.e., heating and cooling of the water surface. Additionally, Dissolved Inorganic Carbon (DIC) and Total Alkalinity (AT) contributed significantly to the observed change in pCO2w as a consequence of along-coast advection and upwelling of CO2-rich deep water, and likely biological production, and uptake of atmospheric CO2. The area is a net annual source for atmospheric CO2 of 0.180 ± 0.009 mol CO2 m−2 y−1. Based on a compilation of historic and our new data, altogether covering the years 1977 to 2015, long term trends of pCO2w were determined for the seasons winter-spring (1.75 ± 0.72 μatm y−1) and summer -fall (180 ± 0.41 μatm y−1), both weaker than the atmospheric trend (1.96 ± 0.02 μatm y−1). We are suggesting that the study region has transformed from being a source of CO2 to the atmosphere throughout the year to becoming a sink of CO2 during parts of the year. The long term pCO2w trend was to a large degree driven by increasing DIC, but increasing AT and temperature also played a role.

Continue reading ‘Sea surface pCO2 variability and air-sea CO2 exchange in the coastal Sudanese Red Sea’

Osmotic response of Dotilla fenestrata (sand bubbler crab) exposed to combined water acidity and varying metal (Cd and Pb)

This study assessed the interactive effects of near-future coastal acidification in combination with varying sub lethal metal concentrations on the haemolymph osmolality of Dotilla fenestrata. Crabs were exposed to acute combination of near-future pH scenarios of estuarine systems (7.2, 7.4 and 7.6) by bubbling CO2 into holding tanks and metal concentrations (Cd = 0.50, 0.75, and 1.00 mg/l), (Pb = 6.50, 8.50 and 10.50 mg/l) and (Cd & Pb = 4.50, 5.75 and 7.00 mg/l) at 32 psu salinity and 18 °C for 96 h and compared with the control group that were acclimated in water medium (salinity 32 psu, temperature 18 °C and pH 8.1). Mean haemolymph osmolality of crabs exposed to a combination of varying pH and metal concentrations were not significantly different (ANOVA HSD: df 9; p > 0.05) from the crabs acclimated close to background water parameters. The study showed that near-future coastal pH has no significant effect on the haemolymph osmolality of the crab Dotilla exposed to sublethal concentrations of Cd and Pb at salinity level of 32 ppt.

Continue reading ‘Osmotic response of Dotilla fenestrata (sand bubbler crab) exposed to combined water acidity and varying metal (Cd and Pb)’

Hypoxia in the Persian Gulf and the Strait of Hormuz

Highlights

  • Hypoxia in the Persian Gulf evaluated during 2018–2019.
  • Seasonal summer to autumn hypoxia occurred at depths ≥ 50 m to the bottom.
  • The estimated near-bottom hypoxia in the Persian Gulf was about 50,000 km2 in autumn.
  • The measured oxygen values were the lowest reported values in the open waters of the Persian Gulf, so far.

Abstract

In this article dissolved oxygen results of research cruises through the Persian Gulf during 2018–2019 are discussed. The results showed that summer to autumn hypoxia occurred mainly at depths ≥ 50 m to the bottom. This seasonal hypoxia started in late summer reaching its greatest severity in mid-autumn with an area of 50,000 km2 in the Persian Gulf. The minimum oxygen measured at the near-bottom layer of the western basin in autumn (25.8 μmol/kg) was lower than any previous measurement in the open waters of the Persian Gulf. In the Strait of Hormuz, the seasonal hypoxia appeared in summer in the near bottom of the most eastern part at the Iranian side. pHT values recorded in hypoxic waters were as low as what is predicted for surface ocean under ocean acidification in 2100. Considering the results, we suggest evaluating the effects of hypoxia and acidification on the Persian Gulf ecosystems.

Continue reading ‘Hypoxia in the Persian Gulf and the Strait of Hormuz’

On calcium-to-alkalinity anomalies in the North Pacific, Red Sea, Indian Ocean and Southern Ocean

An important factor for predicting the effect of increased CO2 on future acidification of the ocean is a proper understanding of the interactions controlling production and dissolution of calcium carbonate minerals (CaCO3). The production and dissolution of CaCO3 in the ocean can be assessed over large spatial scales by measuring seawater calcium concentrations and total alkalinity (AT), yet past studies suggest that there could be large discrepancies between calcium and AT-based balances of the CaCO3 cycle in the North Pacific and Indian Oceans. Here, we analyse water column samples collected along transects in the North Pacific, Southern Ocean, tropical Indian Ocean and Red Sea for their concentrations of calcium, nutrients, and AT. We find that there is an excess calcium over AT anomaly in the top 1000 m of the tropical Indian Ocean water-column. The source of this anomaly is the dissolution of subsurface gypsum deposits in the Red Sea. We find no evidence for calcium-over-AT anomalies in the North Pacific, in contrast to previous studies. Our results show that, in most cases, calcium and AT data agree well and can be used to reconstruct the marine CaCO3 cycle.

Continue reading ‘On calcium-to-alkalinity anomalies in the North Pacific, Red Sea, Indian Ocean and Southern Ocean’

Effect of CO2 driven ocean acidification on calcification, physiology and ovarian cells of tropical sea urchin Salmacis virgulata – a microcosm approach

In the present study, we depict the structural modification of test minerals, physiological response and ovarian damage in the tropical sea urchin Salmacis virgulata using microcosm CO2 (Carbon dioxide) perturbation experiment. S. virgulata were exposed to hypercapnic conditions with four different pH levels using CO2 gas bubbling method that reflects ambient level (pH 8.2) and elevated pCO2 scenarios (pH 8.0, 7.8 and 7.6). The variations in physical strength and mechanical properties of S. virgulata test were evaluated by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanned electron microscopy analysis. Biomarker enzymes such as glutathione-S-transferase, catalase, acetylcholine esterase, lipid peroxidase and reduced glutathione showed physiological stress and highly significant (p < 0.01) towards pH 7.6 and 7.8 treatments. Ovarian cells were highly damaged at pH 7.6 and 7.8 treatments. This study proved that the pH level 7.6 and 7.8 drastically affect calcification, physiological response and ovarian cells in S. virgulata.

Continue reading ‘Effect of CO2 driven ocean acidification on calcification, physiology and ovarian cells of tropical sea urchin Salmacis virgulata – a microcosm approach’

Divergent proteomic responses offer insights into resistant physiological responses of a reef-foraminifera to climate change scenarios

Reef-dwelling calcifiers face numerous environmental stresses associated with anthropogenic carbon dioxide emissions, including ocean acidification and warming. Photosymbiont-bearing calcifiers, such as large benthic foraminifera, are particularly sensitive. To gain insight into their resistance and adaptive mechanisms to climate change, Amphistegina lobifera from the Gulf of Aqaba were cultured under elevated pCO2 (492, 963, and 3182 ppm) fully-crossed with elevated temperature (28°C and 31°C) for two months. Differential protein abundances in host and photosymbionts amongst treatments were investigated alongside physiological responses and microenvironmental pH variations. Over 1000 proteins were identified, of which one-third varied significantly between treatments. Thermal stress induced protein depletions, along with reduced holobiont growth. Elevated pCO2 caused only minor proteomic alterations and color changes. However, combined stressors reduced pore sizes and increased microenvironmental pH, indicating adaptive modifications to gas exchange. Notably, substantial proteomic variations at moderate-pCO2 and 31°C indicate cellular stress, while stable physiological performance at high-pCO2 and 31°C is scrutinized by putative decreases in test stability. Our experiment shows that the effects of climate change can be missed when stressors are assessed in isolation, and that physiological responses should be assessed across organismal levels to make more realistic predictions for the fate of reef calcifiers.

Continue reading ‘Divergent proteomic responses offer insights into resistant physiological responses of a reef-foraminifera to climate change scenarios’

Effect of CO2 driven ocean acidification on calcification, physiology and ovarian cells of tropical sea urchin Salmacis virgulata – a microcosm approach

In the present study, we depict the structural modification of test minerals, physiological response and ovarian damage in the tropical sea urchin Salmacis virgulata using microcosm CO2 (Carbon dioxide) perturbation experiment. S. virgulata were exposed to hypercapnic conditions with four different pH levels using CO2 gas bubbling method that reflects ambient level (pH 8.2) and elevated pCO2 scenarios (pH 8.0, 7.8 and 7.6). The variations in physical strength and mechanical properties of S. virgulata test were evaluated by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanned electron microscopy analysis. Biomarker enzymes such as glutathione-S-transferase, catalase, acetylcholine esterase, lipid peroxidase and reduced glutathione showed physiological stress and highly significant (p < 0.01) towards pH 7.6 and 7.8 treatments. Ovarian cells were highly damaged at pH 7.6 and 7.8 treatments. This study proved that the pH level 7.6 and 7.8 drastically affect calcification, physiological response and ovarian cells in S. virgulata.

Continue reading ‘Effect of CO2 driven ocean acidification on calcification, physiology and ovarian cells of tropical sea urchin Salmacis virgulata – a microcosm approach’

Elevated acidification rates due to deposition of atmospheric pollutants in the coastal Bay of Bengal

Human inputs of pollutants to the atmosphere and subsequent deposition may decrease pH in the coastal waters. Significant rate of decrease in pH and increase in pCO2 by 3 to 5 times is noticed in the coastal Bay of Bengal (BoB) than the global trend in the last few decades. We provide evidence for the first time for a rapid decrease in surface water pH due to atmospheric deposition of pollutants in the coastal BoB. The decrease in pH in the coastal BoB over the last decade is associated with concomitant increase in aerosol optical depth (AOD), total suspended particles (TSP) in air, sulphate and nitrate concentrations in TSP. This study suggests that contamination of surface coastal BoB by atmospheric pollutants not only acidifies surface ocean but also potentially amplifies CO2 emission with immediate implications to regional weather and climate.

Continue reading ‘Elevated acidification rates due to deposition of atmospheric pollutants in the coastal Bay of Bengal’

Effects of experimental ocean acidification on the larval morphology and metabolism of a temperate Sparid, Chrysoblephus laticeps

Ocean acidification is predicted to have widespread impacts on marine species. The early life stages of fishes, being particularly sensitive to environmental deviations, represent a critical bottleneck to recruitment. We investigated the effects of ocean acidification (∆pH = −0.4) on the oxygen consumption and morphometry during the early ontogeny of a commercially important seabream, Chrysoblephus laticeps, up until flexion. Hatchlings appeared to be tolerant to hypercapnic conditions, exhibiting no difference in oxygen consumption or morphometry between treatments, although the yolk reserves were marginally reduced in the low-pH treatment. The preflexion stages appeared to undergo metabolic depression, exhibiting lower metabolic rates along with lower growth metrics in hypercapnic conditions. However, although the sample sizes were low, the flexion-stage larvae exhibited greater rates of metabolic and growth metric increases in hypercapnic conditions. This study shows that the effects of OA may be stage specific during early ontogeny and potentially related to the development of crucial organs, such as the gills. Future studies investigating the effects of climate change on fish larvae should endeavour to include multiple developmental stages in order to make more accurate predictions on recruitment dynamics for the coming decades.

Continue reading ‘Effects of experimental ocean acidification on the larval morphology and metabolism of a temperate Sparid, Chrysoblephus laticeps’

The influence of mouth status on pH variability in small temporarily closed estuaries

Highlights

  • pH in TCEs are highly variable, but can be influenced by morphology and mouth state.
  • Non-perched estuary when open – pH variability is influenced by mixing.
  • Perched system when open – in situ biological processes dominate pH patterns.
  • Closed state in all systems – in situ biological processes dominate pH dynamics.
  • Mixing through tidal flushing, biological processes through longer residence time.

Abstract

Land-based nutrient enrichment of estuarine waters is emerging as a major factor influencing pH and has been referred to as “the other eutrophication problem”. Small temporarily closed estuaries with high residence times are likely to be especially prone to these impacts. This study investigated changes in pH during the open and closed phases in four small temporarily closed estuaries in KwaZulu-Natal, South Africa. The relationship be-tween pH and mouth state was investigated in each estuary (6-16 surveys), based on conceptual relationships derived from the literature. The results indicated that pH is highly variable and influenced by estuary morphology and mouth condition. In a non-perched system, physical mixing due to strong tidal fluctuations influenced pH when the estuary was open; however, in perched estuaries in situ biological processes were more important. In all estuaries during the closed phase, either primary production and/or remineralisation emerged as the dominant influencing factor attributed to longer residence times. Thus trends in pH were evident based on mouth state (i.e. open or closed) and the degree to which these systems were perched, however, further research is needed to understand the complexity of pH variability including the impact and mitigation of anthropogenic change.

Continue reading ‘The influence of mouth status on pH variability in small temporarily closed estuaries’

				
  • Search

  • Categories

  • Tags

  • Post Date

Subscribe to the RSS feed

Follow AnneMarin on Twitter

Blog Stats

  • 1,407,483 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book


%d bloggers like this: