Posts Tagged 'biological reponse'

Ocean acidification effects on calcification and dissolution in tropical reef macroalgae

Net calcification rates for coral reef and other calcifiers have been shown to decline as ocean acidification (OA) occurs. However, the role of calcium carbonate dissolution in lowering net calcification rates is unclear. The objective of this study was to distinguish OA effects on calcification and dissolution rates in dominant calcifying macroalgae of the Florida Reef Tract, including two rhodophytes (Neogoniolithon strictum, Jania adhaerens) and two chlorophytes (Halimeda scabra, Udotea luna). Two experiments were conducted: (1) to assess the difference in gross (45Ca uptake) versus net (total alkalinity anomaly) calcification rates in the light/dark and (2) to determine dark dissolution (45CaCO3), using pH levels predicted for the year 2100 and ambient pH. At low pH in the light, all species maintained gross calcification rates and most sustained net calcification rates relative to controls. Net calcification rates in the dark were ~84% lower than in the light. In contrast to the light, all species had lower net calcification rates in the dark at low pH with chlorophytes exhibiting net dissolution. These data are supported by the relationship (R2 = 0.82) between increasing total alkalinity and loss of 45Ca from pre-labelled 45CaCO3 thalli at low pH in the dark. Dark dissolution of 45CaCO3-labelled thalli was ~18% higher in chlorophytes than rhodophytes at ambient pH, and ~ twofold higher at low pH. Only Udotea, which exhibited dissolution in the light, also had lower daily calcification rates integrated over 24 h. Thus, if tropical macroalgae can maintain high calcification rates in the light, lower net calcification rates in the dark from dissolution may not compromise daily calcification rates. However, if organismal dissolution in the dark is additive to sedimentary carbonate losses, reef dissolution may be amplified under OA and contribute to erosion of the Florida Reef Tract and other reefs that exhibit net dissolution.

Continue reading ‘Ocean acidification effects on calcification and dissolution in tropical reef macroalgae’

Effects of elevated dissolved carbon dioxide and perfluorooctane sulfonic acid, given singly and in combination, on steroidogenic and biotransformation pathways of Atlantic cod

In the aquatic environments, the predicted changes in water temperature, pO2 and pCO2 could result in hypercapnic and hypoxic conditions for aquatic animals. These conditions are thought to affect several basic cellular and physiological mechanisms. Yet, possible adverse effects of elevated CO2 (hypercapnia) on teleost fish, as well as combined effects with emerging and legacy environmental contaminants are poorly investigated. In this study, juvenile Atlantic cod (Gadus morhua) were divided into groups and exposed to three different water bath PFOS exposure regimes (0 (control), 100 and 200 μg/L) for 5 days at 1hr/day, followed by three different CO2-levels (normocapnia, moderate (0.3%) and high (0.9%)). The moderate CO2 level is the predicted near future (within year 2300) level, while 0.9% represent severe hypercapnia. Tissue samples were collected at 3, 6 and 9 days after initiated CO2 exposure. Effects on the endocrine and biotransformation systems were examined by analyzing levels of sex steroid hormones (E2, T, 11-KT) and transcript expression of estrogen responsive genes (ERα, Vtg-α, Vtg-β, ZP2 and ZP3). In addition, transcripts for genes encoding xenobiotic metabolizing enzymes (cyp1a and cyp3a) and hypoxia-inducible factor (HIF-1α) were analyzed. Hypercapnia alone produced increased levels of sex steroid hormones (E2, T, 11-KT) with concomitant mRNA level increase of estrogen responsive genes, while PFOS produced weak and time-dependent effects on E2-inducible gene transcription. Combined PFOS and hypercapnia exposure produced increased effects on sex steroid levels as compared to hypercapnia alone, with transcript expression patterns that are indicative of time-dependent interactive effects. Exposure to hypercapnia singly or in combination with PFOS produced modulations of the biotransformation and hypoxic responses that were apparently concentration- and time-dependent. Loading plots of principal component analysis (PCA) produced a significant grouping of individual scores according to the exposure scenarios at day 6 and 9. Overall, the PCA analysis produced a unique clustering of variables that signifies a positive correlation between exposure to high PFOS concentration and mRNA expression of E2 responsive genes. Notably, this pattern was not evident for individuals exposed to PFOS concentrations in combination with elevated CO2 scenarios. To our knowledge, the present study is the first of its kind, to evaluate such effects using combined exposure to a perfluoroalkyl sulfonate and elevated levels of CO2 saturation, representative of future oceanic climate change, in any fish species or lower vertebrate.

Preus-Olsen G., Olufsen M. O., Pedersen S. A., Letcher R. J. & Arukwe A., in press. Effects of elevated dissolved Carbon dioxide and perfluorooctane sulfonic acid, given singly and in combination, on steroidogenic and biotransformation pathways of Atlantic cod. Aquatic Toxicology. Article (subscription required).

Calcifying coral abundance near low-pH springs: implications for future ocean acidification

Rising atmospheric CO2 and its equilibration with surface ocean seawater is lowering both the pH and carbonate saturation state (Ω) of the oceans. Numerous calcifying organisms, including reef-building corals, may be severely impacted by declining aragonite and calcite saturation, but the fate of coral reef ecosystems in response to ocean acidification remains largely unexplored. Naturally low saturation (Ω ~ 0.5) low pH (6.70–7.30) groundwater has been discharging for millennia at localized submarine springs (called “ojos”) at Puerto Morelos, México near the Mesoamerican Reef. This ecosystem provides insights into potential long term responses of coral ecosystems to low saturation conditions. In-situ chemical and biological data indicate that both coral species richness and coral colony size decline with increasing proximity to low-saturation, low-pH waters at the ojo centers. Only three scleractinian coral species (Porites astreoides, Porites divaricata, and Siderastrea radians) occur in undersaturated waters at all ojos examined. Because these three species are rarely major contributors to Caribbean reef framework, these data may indicate that today’s more complex frame-building species may be replaced by smaller, possibly patchy, colonies of only a few species along the Mesoamerican Barrier Reef. The growth of these scleractinian coral species at undersaturated conditions illustrates that the response to ocean acidification is likely to vary across species and environments; thus, our data emphasize the need to better understand the mechanisms of calcification to more accurately predict future impacts of ocean acidification.

Continue reading ‘Calcifying coral abundance near low-pH springs: implications for future ocean acidification’

A hypothesis linking sub-optimal seawater pCO2 conditions for cnidarian-Symbiodinium symbioses with the exceedence of the interglacial threshold (> 260 ppmv)

Most scleractinian corals and many other cnidarians host intracellular photosynthetic dinoflagellate symbionts (“zooxanthellae”). The zooxanthellae contribute to host metabolism and skeletogenesis to such an extent that this symbiosis is well recognised for its contribution in creating the coral reef ecosystem. The stable functioning of cnidarian symbioses is however dependent upon the host’s ability to maintain demographic control of its algal partner. In this review, I explain how the modern envelope of seawater conditions found within many coral reef ecosystems (characterised by elevated temperatures, rising pCO2, and enriched nutrient levels) are antagonistic toward the dominant host processes that restrict excessive symbiont proliferation. Moreover, I outline a new hypothesis and initial evidence base, which support the suggestion that the additional “excess” zooxanthellae fraction permitted by seawater pCO2 levels beyond 260 ppmv significantly increases the propensity for symbiosis breakdown (“bleaching”) in response to temperature and irradiance extremes. The relevance of this biological threshold is discussed in terms of historical reef extinction events, glacial-interglacial climate cycles and the modern decline of coral reef ecosystems.

Continue reading ‘A hypothesis linking sub-optimal seawater pCO2 conditions for cnidarian-Symbiodinium symbioses with the exceedence of the interglacial threshold (> 260 ppmv)’

Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2

Rising atmospheric CO2 concentrations could cause a calcium carbonate subsaturation of Arctic surface waters in the next 20 yr, making these waters corrosive for calcareous organisms. It is presently unknown what effects this will have on Arctic calcifying organisms and the ecosystems of which they are integral components. So far, acidification effects on crustose coralline red algae (CCA) have only been studied in tropical and Mediterranean species. In this work, we investigated calcification rates of the CCA Lithothamnion glaciale collected in northwest Svalbard in laboratory experiments under future atmospheric CO2 concentrations. The algae were exposed to simulated Arctic summer and winter light conditions in 2 separate experiments at optimum growth temperatures. We found a significant negative effect of increased CO2 levels on the net calcification rates of L. glaciale in both experiments. Annual mean net dissolution of L. glaciale was estimated to start at an aragonite saturation state between 1.1 and 0.9 which is projected to occur in parts of the Arctic surface ocean between 2030 and 2050 if emissions follow ‘business as usual’ scenarios (SRES A2; IPCC 2007). The massive skeleton of CCA, which consist of more than 80% calcium carbonate, is considered crucial to withstanding natural stresses such as water movement, overgrowth or grazing. The observed strong negative response of this Arctic CCA to increased CO2 levels suggests severe threats of the projected ocean acidification for an important habitat provider in the Arctic coastal ocean.

Continue reading ‘Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2’

Shell-shock! Damage to marine ecosystems revealed

A team of marine experts is helping predict the future of coastal ecosystems after discovering that warming temperatures may exacerbate ocean acidification.

In a paper published in full by Nature Climate Change magazine this month, the scientists warn that rapidly deteriorating Mediterranean coastal ecosystems are further threatened by increasing CO2 levels.

Dr Riccardo Rodolfo-Metalpa, Plymouth University Postdoctoral Research Fellow, based at the International Atomic Environmental Agency (IAEA), has been studying marine life off the Island of Ischia in Italy where carbon dioxide bubbles up through vents in the seabed due to volcanic activity around Mount Vesuvius in Naples.

Dr Rodolfo-Metalpa, said: “Our transplant experiments with corals, limpets and commercially important mussels have shown the severe risks associated with increasing carbon dioxide emissions for marine life. These animals try to grow their shells and skeletons faster but they simply dissolve away. Mediterranean coastal ecosystems are being degraded by increasing temperatures and we now know that this warming can make the effects of ocean acidification worse.”

Dr Jason Hall-Spencer, a Reader in Marine Biology at Plymouth University, coordinated the team of scientists from Monaco, Italy, Israel and France as part of a project to assess the risks related to ocean acidification and seawater temperature increase at organism, ecosystem and economic scales.
Continue reading ‘Shell-shock! Damage to marine ecosystems revealed’

Coral and mollusc resistance to ocean acidification adversely affected by warming

Increasing atmospheric carbon dioxide (CO2) concentrations are expectedto decrease surface ocean pH by 0.3–0.5 units by 2100, lowering the carbonate ion concentration of surfacewaters. This rapid acidification is predicted to dramatically decrease calcification in many marine organisms. Reduced skeletal growth under increased CO2 levels has already been shown for corals, molluscs and many other marine organisms. The impact of acidification on the ability of individual species to calcify has remained elusive, however, as measuring net calcification fails to disentangle the relative contributions of gross calcification and dissolution rates on growth. Here, we show that corals and molluscs transplanted along gradients of carbonate saturation state at Mediterranean CO2 vents are able to calcify and grow at even faster than normal rates when exposed to the high CO2 levels projected for the next 300 years. Calcifiers remain at risk, however, owing to the dissolution of exposed shells and skeletons that occurs as pH levels fall. Our results show that tissues and external organic layers play a major role in protecting shells and skeletons from corrosive sea water, limiting dissolution and allowing organisms to calcify. Our combined field and laboratory results demonstrate that the adverse effects of global warming are exacerbated when high temperatures coincide with acidification.
Continue reading ‘Coral and mollusc resistance to ocean acidification adversely affected by warming’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,388,013 hits


Ocean acidification in the IPCC AR5 WG II

OUP book