Posts Tagged 'biolgical response'

Decreased pH impairs sea urchin resistance to predatory fish: a combined laboratory-field study to understand the fate of top-down processes in future oceans

Highlights

  • Combined laboratory-field approach to study OA effects on predator-prey interactions.

  • Adult sea urchins mechanical defence strategies are compromised by decreased pH.

  • Field data confirm grater vulnerability to predation of sea urchins exposed to lower pH.

  • Future more acidic seawaters will impair sea urchin resistance to predatory fish.

Abstract

Changing oceans represent a serious threat for a wide range of marine organisms, with severe cascading effects on ecosystems and their services. Sea urchins are particularly sensitive to decreased pH expected for the end of the century and their key ecological role in regulating community structure and functioning could be seriously compromised. An integrated approach of laboratory and field experiments has been implemented to investigate the effects of decreased pH on predator-prey interaction involving sea urchins and their predators. Our results suggest that under future Ocean Acidification scenarios adult sea urchins defence strategies, such as spine length, test robustness and oral plate thickness, could be compromised together with their survival chance to natural predators. Sea urchins represent the critical linkage between top-down and bottom-up processes along Mediterranean rocky reefs, and the cumulative impacts of global and local stressors could lead to a decline producing cascading effects on benthic ecosystems.

Continue reading ‘Decreased pH impairs sea urchin resistance to predatory fish: a combined laboratory-field study to understand the fate of top-down processes in future oceans’

Metabolic profiling reveals biochemical pathways responsible for eelgrass response to elevated CO2 and temperature

As CO2 levels in Earth’s atmosphere and oceans steadily rise, varying organismal responses may produce ecological losers and winners. Increased ocean CO2 can enhance seagrass productivity and thermal tolerance, providing some compensation for climate warming. However, the metabolic shifts driving the positive response to elevated CO2 by these important ecosystem engineers remain unknown. We analyzed whole-plant performance and metabolic profiles of two geographically distinct eelgrass (Zostera marina L.) populations in response to CO2 enrichment. In addition to enhancing overall plant size, growth and survival, CO2 enrichment increased the abundance of Calvin Cycle and nitrogen assimilation metabolites while suppressing the abundance of stress-related metabolites. Overall metabolome differences between populations suggest that some eelgrass phenotypes may be better suited than others to cope with an increasingly hot and sour sea. Our results suggest that seagrass populations will respond variably, but overall positively, to increasing CO2 concentrations, generating negative feedbacks to climate change.

Continue reading ‘Metabolic profiling reveals biochemical pathways responsible for eelgrass response to elevated CO2 and temperature’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,389,589 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives