Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp.

Highlights

• Intensive mariculture activities contribute to coastal acidification.

• Inorganic carbon use of calcifying macroalgae is diverse and species-specific.

• Long term exposure to extreme low-pH lowers growth and calcification of Sporolithon sp.

Abstract

Fish farming in coastal areas has become an important source of food to support the world’s increasing population. However, intensive and unregulated mariculture activities have contributed to changing seawater carbonate chemistry through the production of high levels of respiratory CO2. This additional CO2, i.e. in addition to atmospheric inputs, intensifies the effects of global ocean acidification resulting in localized extreme low pH levels. Marine calcifying macroalgae are susceptible to such changes due to their CaCO3 skeleton. Their physiological response to CO2-driven acidification is dependent on their carbon physiology. In this study, we used the pH drift experiment to determine the capability of 9 calcifying macroalgae to use one or more inorganic carbon (Ci) species. From the 9 species, we selected the rhodolith Sporolithon sp. as a model organism to investigate the long-term effects of extreme low pH on the physiology and biochemistry of calcifying macroalgae. Samples were incubated under two pH treatments (pH 7.9 = ambient and pH 7.5 = extreme acidification) in a temperature-controlled (26 ± 0.02 °C) room provided with saturating light intensity (98.3 ± 2.50 μmol photons m-2 s-1). After the experimental treatment period (40 d), growth rate, calcification rate, nutrient uptake rate, organic content, skeletal CO3-2, pigments, and tissue C, N and P of Sporolithon samples were compared. The pH drift experiment revealed species-specific Ci use mechanisms, even between congenerics, among tropical calcifying macroalgae. Furthermore, long-term extreme low pH significantly reduced the growth rate, calcification rate and skeletal CO3-2 content by 79%, 66% and 18%, respectively. On the other hand, nutrient uptake rates, organic matter, pigments and tissue C, N and P were not affected by the low pH treatments. Our results suggest that the rhodolith Sporolithon sp. is susceptible to the negative effects of extreme low pH resulting from intensive mariculture-driven coastal acidification.

Narvarte B. C. V., Nelson W. A. & Roleda M. Y., in press. Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp.. Environmental Pollution. Article (subscription required).

0 Responses to “Inorganic carbon utilization of tropical calcifying macroalgae and the impacts of intensive mariculture-derived coastal acidification on the physiological performance of the rhodolith Sporolithon sp.”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,399,639 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives