Season specific influence of projected ocean changes on the response to cadmium of stress-related genes in Mytilus galloprovincialis

Highlights

• Seasonal effects of Cd, warming and acidification on mussels target genes were assessed.

• mt-20 showed higher responsiveness to Cd exposure in digestive gland than in gills.

• hsp70 was sensitive to acidification in summer in digestive gland and in winter in gills.

• Cu/Zn-sod, gst-pi and cat showed tissue- and season-specific responses.

•Differences between tissues and seasons of investigation were demonstrated to occur.

Abstract

Anthropogenic inputs of carbon dioxide in the atmosphere are driving ocean warming and acidification. The potential threat represented by these changes for marine species could be amplified in coastal areas, characterized by higher levels of pollutants. In addition, temperate organisms may exhibit a different seasonal tolerance to stressors influenced by fluctuations of environmental and physiological factors. In this study, Mediterranean mussels Mytilus galloprovincialis collected both in summer and winter were exposed to combinations of two temperatures (SST, seasonal surface temperature and SST+5 °C) and two levels of pH (8.20 and 7.40) in clean or cadmium contaminated seawater (20 μg/L Cd). mRNA levels of genes related to metal-induced stress response were investigated, including metallothionein mt-20, heat-shock protein hsp70, superoxide dismutase Cu/Zn-sod, catalase cat, glutathione peroxidase gpx1 and glutathione S-transferase gst-pi. To further elucidate if tissues with different physiological roles could exhibit different responsiveness, such analyses were carried out in digestive gland and in gills of exposed mussels. mt-20 mRNA increase after Cd-exposure was higher in the digestive gland than in the gills, with few modulations by temperature or pH only in the latter. Acidification, alone or in combination with other stressors, increased hsp70 mRNA, with seasonal- and tissue-specificities (higher in summer and in digestive gland). Among antioxidants, gpx1 mRNA was affected by Cd in both tissues and seasons, with further modulations due to pH and temperature variation tissue- and season-specific; in winter the combination of Cd, warming and acidification affected Cu/Zn-sod both in digestive gland and gills and cat only in gills, while weak seasonal variations were observed for gst-pi transcripts only in digestive gland. The overall results highlighted the importance of considering seasonality and responsiveness of different tissues to predict the effects of sudden changes in environmental parameters on responsiveness to and toxicity of chemicals in marine coastal organisms.

Giuliani M. E.., Filippini G. & Nardi A., 2020. Season specific influence of projected ocean changes on the response to cadmium of stress-related genes in Mytilus galloprovincialis. Marine Environmental Research 162: 105091. doi: 10.1016/j.marenvres.2020.105091. Article (subscription required).

0 Responses to “Season specific influence of projected ocean changes on the response to cadmium of stress-related genes in Mytilus galloprovincialis”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,385,366 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book