Predator populations differ in their foraging responses to acute seawater acidification

Local adaptation can cause predator populations to vary in traits and their effects on prey, but few studies have tested whether divergent predator populations respond differently to acute environmental stressors. We tested how Nucella dogwhelks from 3 populations with natural exposure to distinct environmental regimes in the California Current System altered consumption of mussel prey (Mytilus californianus) in ambient (pH 8.0, 429 µatm partial pressure of CO2 [pCO2]) and acidified (pH 7.6, 1032 µatm pCO2) seawater. Overall, experimental acidification increased the variation in consumption time observed among populations. We found reduced consumption time for the population that experienced more frequent exposure to low pH conditions in nature but not for populations with less prior exposure. Exposure to acidification also altered the individual components of consumption time—search time and handling time—depending on source population. These results indicate that impaired predator performance is not a universal response to acidification, that predation responses to acute acidification can be population specific, and that individual population responses may relate to prior exposure. Our study highlights how population-specific responses to climate change can lead to differences in ecological effects that may restructure prey communities at local scales.

Contolini G. M., Kroeker K. J. & Palkovacs E. P., 2020. Predator populations differ in their foraging responses to acute seawater acidification. Marine Ecology Progress Series 646: 69-78. Article (subscription required).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading