Establishing the link between Permian volcanism and biodiversity changes: insights from geochemical proxies

Highlights

• Current understanding of biodiversity changes in the Permian is summarized.

• Conventional and non-traditional geochemical proxy records in the Permian are assessed.

• Main characteristics of four Permian large igneous provinces are compared.

• The potential links between the Siberian Traps and EPME, and the Emeishan LIP and EGME, are examined.

• In addition to the Siberian Traps, continental arc magmatism could also played an important role in the EPME.

Abstract

Current understanding of biodiversity changes in the Permian is presented, especially the consensus and disagreement on the tempo, duration, and pattern of end-Guadalupian and end-Permian mass extinctions. The end-Guadalupian mass extinction (EGME; i.e., pre-Lopingian crisis) is not as severe as previously thought. Moreover, the turnovers of major fossil groups occurred at different temporal levels, therefore the total duration of the end-Guadalupian mass extinction is relatively extended. By comparison, fossil records constrained with high-precision geochronology indicate that the end-Permian mass extinction (EPME) was a single-pulse event and happened geologically instantaneous. Variation of geochemical proxies preserved in the sedimentary records is important evidence in examining potential links between volcanisms and biodiversity changes. Some conventional and non-traditional geochemical proxy records in the Permian show abrupt changes across the Permian-Triassic boundary, reflecting climate change, ocean acidification and anoxia, carbon cycle perturbation, gaseous metal loading, and enhanced continental weathering. These, together with the stratigraphic coincidence between volcanic ashes and the end-Permian mass extinction horizon, point to large-scale volcanism as a potential trigger mechanism.

To further define the nature of volcanism which was responsible for global change in biodiversity, main characteristics of four Permian large igneous provinces (LIPs; i.e., Tarim, Panjal, Emeishan, and Siberian) are compared, in terms of timing and tempo, spatial distribution and volume, and magma-wall rock interactions. The comparison indicates that volcanic fluxes (i.e., eruption rates) and gas productions are the key features distinguishing the Siberian Traps from other LIPs, which also are the primary factors in determining the LIP’s potential of affecting Earth’s surface system. We find that the Siberian Traps volcanism, especially the switch from dominantly extrusive eruptions to widespread sill intrusions, has the strongest potential for destructive impacts, and most likely is the ultimate trigger for profound environmental and biological changes in the latest Permian-earliest Triassic. The role of Palaeotethys subduction-related arc magmatism cannot be fully ruled out, given its temporal coincidence with the end-Permian mass extinction. As for the Emeishan LIP, medium volcanic flux and gas emission probably limited its killing potential, as evident from weak changes in geochemical proxies and biodiversity. Because of its long-lasting but episodic nature, the Early Permian magmatism (e.g., Tarim, and Panjal) may have played a positive role in affecting the contemporaneous environment, as implicated by coeval progressive climate warming, termination of the Late Palaeozoic Ice Age (LPIA), and flourishing of ecosystems.

Chen J. & Xu Y., 2019. Establishing the link between Permian volcanism and biodiversity changes: insights from geochemical proxies. Gondwana Research 75: 68-96. Article (subscription required).

0 Responses to “Establishing the link between Permian volcanism and biodiversity changes: insights from geochemical proxies”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,363,513 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book