Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill

Euphausia superba (Antarctic krill) is a keystone species in the Southern Ocean, but little is known about how it will respond to climate change. Ocean acidification, caused by sequestration of carbon dioxide into ocean surface waters (pCO2), alters the lipid biochemistry of some organisms. This can have cascading effects up the food chain. In a year-long laboratory experiment adult krill were exposed to ambient seawater pCO2 levels (400 μatm), elevated pCO2 levels mimicking near-future ocean acidification (1000, 1500 and 2000 μatm) and an extreme pCO2 level (4000 μatm). Total lipid mass (mg g−1 DM) of krill was unaffected by near-future pCO2. Fatty acid composition (%) and fatty acid ratios associated with immune responses and cell membrane fluidity were also unaffected by near-future pCO2, apart from an increase in 18:3n-3/18:2n-6 ratios in krill in 1500 μatm pCO2 in winter and spring. Extreme pCO2 had no effect on krill lipid biochemistry during summer. During winter and spring, krill in extreme pCO2 had elevated levels of 18:2n-6 (up to 1.2% increase), 20:4n-6 (up to 0.8% increase), lower 18:3n-3/18:2n-6 and 20:5n-3/20:4n-6 ratios, and showed evidence of increased membrane fluidity (up to three-fold increase in phospholipid/sterol ratios). These results indicate that the lipid biochemistry of adult krill is robust to near-future ocean acidification.

Ericson J. A., Hellessey N., Kawaguchi S., Nichols P. D., Nicol S., Hoem N. & Virtue P., 2019. Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill. Scientific Reports 9: 12375. doi: 10.1038/s41598-019-48665-5. Article.

0 Responses to “Near-future ocean acidification does not alter the lipid content and fatty acid composition of adult Antarctic krill”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,291,034 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book