Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows

The net ecosystem productivity (NEP) of two contrasting seagrass meadows within one of the largest seagrass ecosystems in the world, Florida Bay, was assessed using direct measurements over consecutive diel cycles. We report significant differences between NEP determined by dissolved inorganic carbon (NEPDIC) and by dissolved oxygen (NEPDO), likely driven by differences in air-water gas exchange and contrasting responses to variations in light intensity. In this first direct determination of NEPDIC in seagrasses, we found that both seagrass ecosystems were net heterotrophic, on average, despite large differences in seagrass net aboveground primary productivity. Net ecosystem calcification (NEC) was also negative, indicating that both sites were net dissolving of carbonate minerals. We suggest that a combination of carbonate dissolution and respiration in sediments exceeded seagrass primary production and calcification, supporting our negative NEP and NEC measurements. Furthermore, a simple budget analysis indicates that these two seagrass meadows have contrasting impacts on pH buffering of adjacent systems, due to variations in the TA : DIC export ratio. The results of this study highlight the need for better temporal resolution, as well as accurate carbonate chemistry accounting in future seagrass metabolism studies.

Dam B. R. V., Lopes C., Osburn C. L.& Fourqurean J. W., 2019. Net heterotrophy and carbonate dissolution in two subtropical seagrass meadows. Biogeosciences Discussions. Article.


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading