Temporal effects of ocean warming and acidification on coral–algal competition

While there is an ever-expanding list of impacts on coral reefs as a result of ocean warming and acidification, there is little information on how these global changes influence coral–algal competition. The present study assessed the impact of business-as-usual ocean warming and acidification conditions on the survivorship, calcification, photosynthesis and respiration of the coral–algal interaction between the macroalga Halimeda heteromorpha and the coral Acropora intermedia over 8 weeks in two seasons. The physiological responses of A. intermedia and H. heteromorpha were highly dependent on season, with both organisms demonstrating optimal rates of calcification and photosynthesis under present-day conditions in summer. Contact with H. heteromorpha did not influence A. intermedia survivorship, however did reduce long-term calcification rates. Photosynthetic rates of A. intermedia were influenced by algal contact temporally in opposing directions, with rates reduced in winter and increased in summer. Enhanced photosynthetic rates as a result of algal contact were not enough to offset the combined effects of ocean warming and acidification, which regardless of coral–algal contact, reduced survivorship, calcification and photosynthesis of A. intermedia and the calcification rates of H. heteromorpha. These findings provide experimental support for the idea that the effects of coral–algal competition are temporally variable, and help improve our understanding of how future ocean warming and acidification may alter the dynamics of coral–algal interactions.

Brown K. T., Bender-Champ D., Kenton T. M., Rémond C., Hoegh-Guldberg O. & Dove S., 2019. Temporal effects of ocean warming and acidification on coral–algal competition. Corals Reefs 38 (2): 297-809. Article (subscription required).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading