Role of temperature and carbonate system variability on a host-parasite system: implications for the gigantism hypothesis

Highlights

• Field and laboratory evidence support the parasite-induced gigantism hypothesis.

• Weight and thickness shell are influenced by the environmental factors and parasitism.

• Host-parasite interaction may be modulated by SST that interplay with carbonate system variability.

Abstract

Biological interactions and environmental constraints alter life-history traits, modifying organismal performances. Trematode parasites often impact their hosts by inducing parasitic castration, frequently correlated with increased body size in the host (i.e., gigantism hypothesis), which is postulated to reflect the re-allocation of energy released by the reduction in the reproductive process. In this study, we compared the effect of a trematode species on shell size and morphology in adult individuals of the intertidal mussels Perumytilus purpuratus (>20 mm) collected from two local populations of contrasting environmental regimes experienced in central-southern Chile. Our field data indicates that in both study locations, parasitized mussels evidenced higher body sizes (shell length, total weight and volume) as compared with non-parasitized. In addition, parasitized mussels from the southern location evidenced thinner shells than non-parasitized ones and those collected from central Chile, suggesting geographical variation in shell carbonate precipitation across intertidal habitats of the Chilean coast. In laboratory conditions, mussels collected from a local population in central Chile were exposed to two temperature treatments (12 and 18 °C). Parasitized mussels showed higher growth rates than non-parasitized, regardless of the seawater temperature treatments. However, the metabolic rate was not influenced by the parasite condition or the temperature treatments. Our field and laboratory results support the parasite-induced gigantism hypothesis, and suggest that both the thermal environment and geographic location explain only a portion of the increased body size, while the parasitic condition is the most plausible factor modulating the outcome of this host-parasite interaction.

García-Huidobro M. R., Varas O., George-Nascimento M., Pulgar J., Aldana M., Lardies M. A. & Lagos N. A., 2019. Role of temperature and carbonate system variability on a host-parasite system: implications for the gigantism hypothesis. International Journal for Parasitology: Parasites and Wildlife 9: 7-15. Article.

0 Responses to “Role of temperature and carbonate system variability on a host-parasite system: implications for the gigantism hypothesis”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,284,001 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book