Global bioevents and the Cretaceous/Paleogene boundary in Texas and Alabama: stratigraphy, correlation and ocean acidification

Highlights
• This paper discusses the K/Pg in terms of surface water acidification caused by the K/Pg impact event. This is coupled with a new model for, and correlation of, the events recorded in a number of areas both proximal to the impact and distal. In particular the model is based on fieldwork in Texas.

Abstract
With increasing levels of atmospheric pCO2 the oceans are becoming progressively more acidic, with the impact of a lowered pH beginning to affect the calcification of numerous invertebrate groups, including foraminifers, pteropods, heteropods and calcareous nannoplankton. Research on the ecology of foraminifera in the Mediterranean Sea, Gulf of California, Caribbean Sea and elsewhere has shown how modern assemblages are responding to acidification. Experimental work in mesocosms and laboratory cultures are also adding to our knowledge of the response to pH changes. Near Ischia (Italy), natural CO2 vents amongst sea grass meadows are creating low pH environments in which it is possible to observe the response of benthic foraminifera. At a pH of 7.8 the foraminiferal assemblages are already becoming less diverse and below pH 7.6 there are often no calcite-secreting benthic foraminifera. In the Gulf of California, in a deeper-water setting, natural CO2 (and methane) vents are also lowering sea floor pH. The foraminifera show the impact of this change, although the relatively high carbonate saturation ensures that calcite-secreting foraminifers are able to live and reproduce in these relatively low pH environments, only becoming impacted by dissolution effects once dead. Using data from the Cretaceous–Paleogene boundary in Texas, Alabama and north-west Europe it is clear that the plankton was severely impacted by surface water acidification while the relatively shallow water benthic foraminifera show little change and no visible signs of post-mortem dissolution due to ocean acidification.

Hart M. B., Leighton A. D., Hampton M. & Smart C. W., in press. Global bioevents and the Cretaceous/Paleogene boundary in Texas and Alabama: stratigraphy, correlation and ocean acidification. Global and Planetary Change. Article.

0 Responses to “Global bioevents and the Cretaceous/Paleogene boundary in Texas and Alabama: stratigraphy, correlation and ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,272,711 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book