Climate change effects on copepod physiology and trophic transfer

Increased anthropogenic carbon dioxide (CO2) emissions have led to an increasingly acidified ocean and higher average global sea surface temperatures. This alteration of abiotic conditions is directly affecting aquatic organisms through physiological stress and indirectly through reductions in trophic transfer efficiency. Less efficient trophic transfer at the base of the food web would reduce the overall energy available to support higher trophic levels and could be detrimental to the dependent ecosystem. Estuarine ecosystems are subject to harmful algal blooms (HABs). They are also characterized by low species diversity, which lowers ecosystem resilience to environmental perturbations. This results in a system where changes in phytoplankton and their consumers can dramatically impact the health of the local community. Increased temperature and pCO2 are predicted to change nutritional adequacy and/or toxicity of some HAB species and their copepod consumers. Interactions between Karlodinium veneficum, a HAB species present in the Delaware Inland Bays, and its consumer Acartia tonsa, a locally-dominant copepod, were used to assess direct changes to physiology and/or indirect changes to trophic transfer. Acartia tonsa, toxic prey K. veneficum, and non-toxic prey Storeatula major were grown in multi-generational laboratory cultures at both ambient conditions (25 °C/400 ppm pCO2) and those predicted for year 2100 (29 °C/ 1000 ppm pCO2). Physiological changes were assessed using grazing, respirometry, egg production, and egg hatching success. Grazing experiments indicated there was not a direct toxic effect of the prey on A. tonsa. Respiration rates did not change significantly at higher temperature and pCO2 values, indicating physiological compensation. Egg production did not significantly differ between treatments, but a significant reduction in egg hatching success was found when A. tonsa were fed exclusively K. veneficum. Significant reduction of egg production and hatching also occurred as a result of higher temperature and pCO2. Significant reductions in efficiency of carbon transfer from prey to consumer offspring were found when A. tonsa ingested K. veneficum, and when A. tonsa ingested S. major at elevated temperature and pCO2. In summary, A. tonsa acclimated to the elevated pCO2 and temperature conditions, but changes in resource partitioning led to a lowered transfer of carbon to their offspring. Ingestion of K. veneficum also led to a lowered trophic transfer efficiency, irrespective of temperature and pCO2 level. This indicates that both HABs and increased temperature and pCO2 from climate change have the potential to alter ecosystem dynamics by reducing trophic transfer efficiency at the base of the food chain.

Smith L. E., 2018. Climate change effects on a physiology and trophic transfer. MSc thesis, University of Delaware, 53 p. Thesis.

0 Responses to “Climate change effects on copepod physiology and trophic transfer”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,135,436 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book