An assessment of direct dissolved inorganic carbon injection to the coastal region: a model result

The amount of carbon dioxide (CO2) in the atmosphere has increased in the past 60 years and the technology of carbon capture and storage (CCS) has recently been extensively studied. One of the strategies of CCS is to directly inject a high dissolved inorganic carbon (DIC) concentration (or high partial pressure of carbon dioxide, pCO2) solution into the ocean. However, the carbonate dynamics and air-sea gas exchange are usually neglected in a CCS strategy. This study assesses the effect of a DIC-solution injection by using a simple two end-member model to simulate the variation of pH, DIC, total alkalinity (TA) and pCO2 between the river and sea mixing process for the Danshuei River estuary and Hoping River in Taiwan. We observed that the DIC-solution injection can contribute to ocean acidification and can also lead the pCO2 value to change from being undersaturated to oversaturated (with respect to the atmospheric CO2 level). Our model result also showed that the maximum Revelle factors (Δ[CO2]/[CO2])/(Δ[DIC]/[DIC]) among varied pH values (6–9) and DIC concentrations (0.5–3.5 mmol kg−1) were between pH 8.3 and 8.5 in fresh water and were between 7.3 and 7.5 in waters with a salinity of 35, reflecting the changing efficiency of dissolving CO2 gas into the DIC solution and the varying stability of this desired DIC solution. Finally, we suggest this uncoupled Revelle factor between fresh and salty water should be considered in the (anthropogenic) carbonate chemical weathering on a decade to century scale.

Huang W.-J., Kao K.-J., Liu L.-L., Liao C.-W. & Han Y.-L., 2018. An assessment of direct dissolved inorganic carbon injection to the coastal region: a model result. Sustainability 10: 1174. doi:10.3390/su10041174. Article.

 


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading