Warming and pCO2 effects on Florida stone crab larvae


• Elevated pCO2 reduced larval survivorship by 37%, but elevated temperature   had a greater effect reducing larval survival by 71%.
• Combined stressors reduced larval survivorship to megalopae by 80%.
• Larval morphology and ash free dry weight were not different among treatments.
•  Variability among broods suggests there is potential for adaptation within the species.


Greenhouse gas emissions are increasing ocean temperatures and the partial pressure of pCO2, resulting in more acidic waters. It is presently unknown how elevated temperature and pCO2 will influence the early life history stages of the majority of marine coastal species. We investigated the combined effect of elevated temperature (30 °C control and 32 °C treatment) and elevated pCO2 (450 μatm control and 1100 μatm treatment) on the (i) growth, (ii) survival, (iii) condition, and (iv) morphology of larvae of the commercially important Florida stone crab, Menippe mercenaria. At elevated temperature, larvae exhibited a significantly shorter molt stage, and elevated pCO2 caused stage-V larvae to delay metamorphosis to post-larvae. On average, elevated pCO2 resulted in a 37% decrease in survivorship relative to the control; however the effect of elevated temperature reduced larval survivorship by 71%. Exposure to both elevated temperature and pCO2 reduced larval survivorship by 80% relative to the control. Despite this, no significant differences were detected in the condition or morphology of stone crab larvae when subjected to elevated temperature and pCO2 treatments. Although elevated pCO2 could result in a reduction in larval supply, future increases in seawater temperatures are even more likely to threaten the future sustainability of the stone-crab fishery.

Gravinese P. M., Enochs I. C., Manzello D. P., van Woesik R., in press. Warming and pCO2 effects on Florida stone crab larvae. Estuarine, Coastal and Shelf Science. Article (subscription required).

0 Responses to “Warming and pCO2 effects on Florida stone crab larvae”

  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,067,746 hits


Ocean acidification in the IPCC AR5 WG II

OUP book