Archive for March, 2018

Effects of increasing atmospheric CO2 on the marine phytoplankton and bacterial metabolism during a bloom: a coastal mesocosm study


• The effects of increasing atmospheric CO2 were assessed in a coastal mesocosm.
• CO2 enrichment enhanced primary production and photosynthesis efficiency.
• Elevation of atmospheric CO2 decreased bacterial respiration.
• CO2 enrichment enhanced carbon transfer efficiency through the microbial loop.
• The contemporaneous responses have profound implications on carbon cycle.


Increases of atmospheric CO2 concentrations due to human activity and associated effects on aquatic ecosystems are recognized as an environmental issue at a global scale. Growing attention is being paid to CO2 enrichment effects under multiple stresses or fluctuating environmental conditions in order to extrapolate from laboratory-scale experiments to natural systems. We carried out a mesocosm experiment in coastal water with an assemblage of three model phytoplankton species and their associated bacteria under the influence of elevated CO2 concentrations. Net community production and the metabolic characteristics of the phytoplankton and bacteria were monitored to elucidate how these organisms responded to CO2 enrichment during the course of the algal bloom. We found that CO2 enrichment (1000 μatm) significantly enhanced gross primary production and the ratio of photosynthesis to chlorophyll a by approximately 38% and 39%, respectively, during the early stationary phase of the algal bloom. Although there were few effects on bulk bacterial production, a significant decrease of bulk bacterial respiration (up to 31%) at elevated CO2 resulted in an increase of bacterial growth efficiency. The implication is that an elevation of CO2 concentrations leads to a reduction of bacterial carbon demand and enhances carbon transfer efficiency through the microbial loop, with a greater proportion of fixed carbon being allocated to bacterial biomass and less being lost as CO2. The contemporaneous responses of phytoplankton and bacterial metabolism to CO2 enrichment increased net community production by about 45%, an increase that would have profound implications for the carbon cycle in coastal marine ecosystems.

Continue reading ‘Effects of increasing atmospheric CO2 on the marine phytoplankton and bacterial metabolism during a bloom: a coastal mesocosm study’

The ability of macroalgae to mitigate the negative effects of ocean acidification on four species of North Atlantic bivalve

Coastal ecosystems can experience acidification via upwelling, eutrophication, riverine discharge, and climate change. While the resulting increases in pCO2 can have deleterious effects on calcifying animals, this change in carbonate chemistry may benefit some marine autotrophs. Here, we report on experiments performed with North Atlantic populations of hard clams (Mercenaria mercenaria), eastern oysters (Crassostrea virginica), bay scallops (Argopecten irradians), and blue mussels (Mytilus edulis) grown with and without North Atlantic populations of the green macroalgae, Ulva. In 6 of 7 experiments, exposure to elevated pCO2 levels (~ 1,700 µatm) resulted in depressed shell- and/or tissue-based growth rates of bivalves compared to control conditions (p < 0.05) whereas rates were significantly higher in the presence of Ulva in all experiments (p < 0.05). In many cases, the co-exposure elevated pCO2 levels and Ulva had an antagonistic effect on bivalve growth rates whereby the presence of Ulva under elevated pCO2 levels significantly improved their performance compared to the acidification only treatment (p < 0.05). Saturation states for calcium carbonate (Ω) were significantly higher in the presence of Ulva under both ambient and elevated CO2 delivery rates (p < 0.05). Collectively, the results suggest that photosynthesis and/or nitrate assimilation by Ulva increased alkalinity, fostering a carbonate chemistry regime more suitable for optimal growth of calcifying bivalves. This suggests that large natural and/or aquacultured collections of macroalgae in acidified environments could serve as a refuge for calcifying animals that may otherwise be negatively impacted by elevated pCO2 levels and depressed Ω.

Continue reading ‘The ability of macroalgae to mitigate the negative effects of ocean acidification on four species of North Atlantic bivalve’

New edition of the Global Ocean Health OA report

Global Ocean Health, a program of the National Fisheries Conservation Center, just released a new edition of their “Ocean Acidification Report”.

In this issue you will hear about Bob Foy’s research on king crabs, coccolithophores, sexier male fleas, the OA Alliance, and more.

Continue reading ‘New edition of the Global Ocean Health OA report’

Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios

The bioeroding sponge Cliona orientalis is photosymbiotic with dinoflagellates of the genus Symbiodinium and is pervasive on the Great Barrier Reef. We investigated how C. orientalis responded to past and future ocean conditions in a simulated community setting. The experiment lasted over an Austral summer under four carbon dioxide emission scenarios: a pre-industrial scenario (PI), a present-day scenario (PD; control), and two future scenarios of combined ocean acidification and ocean warming, i.e., B1 (intermediate) and A1FI (extreme). The four scenarios also simulated natural variability of carbon dioxide partial pressure and temperature in seawater. Responses of C. orientalis generally remained similar between the PI and PD treatments. C. orientalis under B1 displayed a dramatic increase in lateral tissue extension, but bleached and displayed reduced rates of respiration and photosynthesis. Some B1 sponge replicates died by the end of the experiment. Under A1FI, strong bleaching and subsequent mortality of all C. orientalis replicates occurred at an early stage of the experiment. Mortality arrested bioerosion by C. orientalis under B1 and A1FI. Overall, the absolute amount of calcium carbonate eroded by C. orientalis under B1 or A1FI was similar to that under PI or PD at the end of the experiment. Although bioerosion rates were raised by short-term experimental acidification in previous studies, our findings from the photosymbiotic C. orientalis imply that the effects of bioerosion on reef carbonate budgets may only be temporary if the bioeroders cannot survive long-term in the future oceans.

Continue reading ‘Bleaching and mortality of a photosymbiotic bioeroding sponge under future carbon dioxide emission scenarios’

Simulated effects of interactions between ocean acidification, marine organism calcification, and organic carbon export on ocean carbon and oxygen cycles

Ocean acidification caused by oceanic uptake of anthropogenic carbon dioxide (CO2) tends to suppress the calcification of some marine organisms. This reduced calcification then enhances surface ocean alkalinity and increases oceanic CO2 uptake, a process that is termed calcification feedback. On the other hand, decreased calcification also reduces the export flux of calcium carbonate (CaCO3), potentially reducing CaCO3-bound organic carbon export flux and CO2 uptake, a process that is termed ballast feedback. In this study, we incorporate a range of different parameterizations of the links between organic carbon export, calcification, and ocean acidification into an Earth system model, in order to quantify the long-term effects on oceanic CO2 uptake that result from calcification and ballast feedbacks. We utilize an intensive CO2 emission scenario to drive the model in which an estimated fossil fuel resource of 5000 Pg C is burnt out over the course of just a few centuries. Simulated results show that, in the absence of both calcification and ballast feedbacks, by year 3500, accumulated oceanic CO2 uptake is 2041 Pg C. Inclusion of calcification feedback alone increases the simulated uptake by 629 Pg C (31%), while the inclusion of both calcification and ballast feedbacks increase simulated uptake by 449–498 Pg C (22–24%), depending on the parameter values used in the ballast feedback scheme. These results indicate that ballast effect counteracts calcification effect in oceanic CO2 uptake. Ballast effect causes more organic carbon to accumulate and decompose in the upper ocean, which in turn leads to decreased oxygen concentration in the upper ocean and increased oxygen at depths. By year 2600, the inclusion of ballast effect would decrease oxygen concentration by 11% at depth of ca. 200 m in tropics. Our study highlights the potentially critical effects of interactions between ocean acidification, marine organism calcification, and CaCO3-bound organic carbon export on the ocean carbon and oxygen cycles.

Continue reading ‘Simulated effects of interactions between ocean acidification, marine organism calcification, and organic carbon export on ocean carbon and oxygen cycles’

Can evolution outpace climate change?

At least one sea creature—the purple sea urchin—appears to pass on the ability to rapidly adapt to a harsh environment.

Climate change is rapidly altering Earth’s oceans—reshaping coastlines, raising water temperatures, and increasing ocean acidity, all of which can have devastating consequences for the animals that live in them. But at least one marine creature may be more resilient to the changes than previously thought, new study suggests.
Over time, animals evolve with changes in their environments, but conservationists have long worried that climate change is progressing faster than many species can adapt. But researchers at the University of California–Santa Barbara thought that something called transgenerational plasticity—in which parents’ experiences shape their offspring’s characteristics—might allow some species to rapidly evolve to a changing ocean.

Continue reading ‘Can evolution outpace climate change?’

Bivalve shell formation in a naturally CO2-enriched habitat: unraveling the resilience mechanisms from elemental signatures

Research highlights:

  1. Mya arenaria juveniles from Kiel Fjord can partially alleviate the impact of high pCO2
  2. Changes in the calcifying fluid chemistry can be inferred from shell elemental signatures
  3. Cl/Cashell reflects the import of HCO3– in the calcifying fluid
  4. U/Cashell indicates the pH in the calcifying fluid
  5. Our work provides new evidence of how marine bivalves respond to high pCO2

Marine bivalves inhabiting naturally pCO2-enriched habitats can likely tolerate high levels of acidification. Consequently, elucidating the mechanisms behind such resilience can help to predict the fate of this economically and ecologically important group under near-future scenarios of CO2-driven ocean acidification. Here, we assess the effects of four environmentally realistic pCO2 levels (900, 1500, 2900 and 6600 μatm) on the shell production rate of Mya arenaria juveniles originating from a periodically pCO2-enriched habitat (Kiel Fjord, Western Baltic Sea). We find a significant decline in the rate of shell growth as pCO2 increases, but also observe unchanged shell formation rates at moderate pCO2 levels of 1500 and 2900 μatm, the latter illustrating the capacity of the juveniles to partially mitigate the impact of high pCO2. Using recently developed geochemical tracers we show that M. arenaria exposed to a natural pCO2 gradient from 900 to 2900 μatm can likely concentrate HCO3 in the calcifying fluid through the exchange of HCO3–/Cl– and simultaneously maintain the pH homeostasis through active removal of protons, thereby being able to sustain the rate of shell formation to a certain extent. However, with increasing pCO2 beyond natural maximum the bivalves may have limited capacity to compensate for changes in the calcifying fluid chemistry, showing significant shell growth reduction. Findings of the present study may pave the way for elucidating the underlying mechanisms by which marine bivalves acclimate and adapt to high seawater pCO2.

Continue reading ‘Bivalve shell formation in a naturally CO2-enriched habitat: unraveling the resilience mechanisms from elemental signatures’

Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming


• CO2 emissions are changing ocean carbonate chemistry at an unprecedented rate.
• Effects of climate changes are tested in species representative of the basis of the trophic web.
• pH homeostasis has energetic costs that divert energy from cellular processes.
• Further studies are needed to assess effects on ecosystem structure changes.


Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella  tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9[pH], 25.5 °C and TR2: 7.8[pH, 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested.

Continue reading ‘Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming’

Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa

Thecosomatous pteropods, a group of aragonite shell-bearing zooplankton, are becoming an important sentinel organism for understanding the influence of ocean acidification on pelagic organisms. These animals show vulnerability to changing carbonate chemistry conditions, are geographically widespread, and are both biogeochemically and trophically important. The objective of this study was to determine how increasing duration and severity of CO2 treatment influence the physiology of the thecosome Limacina retroversa, integrating both gene expression and organism-level (respiration and calcification) metrics. We exposed pteropods to over-saturated, near-saturated or under-saturated conditions and sampled individuals at 1, 3, 7, 14 and 21 days of exposure to test for the effect of duration. We found that calcification was affected by borderline and under-saturated conditions by week two, while respiration appeared to be more strongly influenced by an interaction between severity and duration of exposure, showing complex changes by one week of exposure. The organismal metrics were corroborated by specific gene expression responses, with increased expression of biomineralization-associated genes in the medium and high treatments throughout and complex changes in metabolic genes corresponding to both captivity and CO2 treatment. Genes associated with other physiological processes such as lipid metabolism, neural function and ion pumping had complex responses, influenced by both duration and severity. Beyond these responses, our findings detail the captivity effects for these pelagic organisms, providing information to contextualize the conclusions of previous studies, and emphasizing a need for better culturing protocols.

Continue reading ‘Exposure to CO2 influences metabolism, calcification and gene expression of the thecosome pteropod Limacina retroversa’

Bioerosion in a changing world: a conceptual framework

Bioerosion, the breakdown of hard substrata by organisms, is a fundamental and widespread ecological process that can alter habitat structure, biodiversity and biogeochemical cycling. Bioerosion occurs in all biomes of the world from the ocean floor to arid deserts, and involves a wide diversity of taxa and mechanisms with varying ecological effects. Many abiotic and biotic factors affect bioerosion by acting on the bioeroder, substratum, or both. Bioerosion also has socio‐economic impacts when objects of economic or cultural value such as coastal defences or monuments are damaged. We present a unifying definition and advance a conceptual framework for (a) examining the effects of bioerosion on natural systems and human infrastructure and (b) identifying and predicting the impacts of anthropogenic factors (e.g. climate change, eutrophication) on bioerosion. Bioerosion is responding to anthropogenic changes in multiple, complex ways with significant and wide‐ranging effects across systems. Emerging data further underscore the importance of bioerosion, and need for mitigating its impacts, especially at the dynamic land–sea boundary. Generalised predictions remain challenging, due to context‐dependent effects and nonlinear relationships that are poorly resolved. An integrative and interdisciplinary approach is needed to understand how future changes will alter bioerosion dynamics across biomes and taxa.

Continue reading ‘Bioerosion in a changing world: a conceptual framework’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,400,684 hits


Ocean acidification in the IPCC AR5 WG II

OUP book