Understanding the impacts of anthropogenic stressors on species, ecosystems, and fishing communities

Anthropogenic modifications of marine environments result from a variety of activities and have effects across social and ecological dimensions. Humans inhabit linked systems, where our actions such as resource extraction, pollution and development influence species in both direct and indirect ways and feedback to influence the human communities dependent on living marine resources. In order to understand the consequences of our actions and develop strategies to plan for future environmental change, we need a diverse set of tools able to incorporate various levels of complexity. This necessitates the improvement and modification of existing tools, development of novel approaches and unique applications of methods from across fields. In this dissertation I address the ways in which we can use and improve existing tools in ecology to advance our understanding and management of marine resources. In the first Chapter I introduce a method to incorporate life stage specific responses to a stressor, ocean acidification, to gain a broader understanding of population level vulnerability. In the second Chapter I extend this work to address ecosystem level change from ocean acidification in the California Current, using an ecosystem model to determine changes in biomass and fisheries catch. In the third chapter, I work to improve our understanding of how multiple stressors acting across life history can be magnified or mitigated, based solely on biological characteristics of populations. Finally, in the fourth Chapter I introduce ecologists and natural scientists to a broader understanding of research on risk in order to improve our methods for approaching ecosystem based fisheries management. My work spans ecological scales from populations to ecosystems and links between social and ecological systems.

Hodgson E. E., 2017. Understanding the impacts of anthropogenic stressors on species, ecosystems, and fishing communities. PhD thesis, University of Washington. Thesis (under embargo).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading