Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa

Marine and estuarine ecosystems are highly productive areas that often act as a final sink for several pollutants, such as cadmium. Environmental conditions in these habitats can affect metal speciation, as well as its uptake and depuration by living organisms. The aim of this study was to assess cadmium uptake and depuration rates in the euryhaline calanoid copepod Acartia tonsa under different pH, salinity and temperature conditions. Cadmium speciation did not vary with changing pH or temperature, but varied with salinity. Free Cd2+ ion activity increased with decreasing salinities resulting in increased cadmium concentrations in A. tonsa. However, uptake rate, derived using free Cd2+ ion activity, showed no significant differences at different salinities indicating a simultaneous combined effect of Cd2+ speciation and metabolic rates for osmoregulation. Cadmium concentration in A. tonsa and uptake rate increased with increasing pH, showing a peak at the intermediate pH of 7.5, while depuration rate fluctuated, thus suggesting that both parameters are mediated by metabolic processes (to maintain homeostasis at pH levels lower than normal) and ion competition at membrane binding sites. Cadmium concentration in A. tonsa, uptake and depuration rates increased with increasing temperature, a trend that can be attributed to an increase in metabolic energy demand at higher temperatures. The present study shows that cadmium uptake and depuration rates in the marine copepod A. tonsa is mostly affected by biological processes, mainly driven by metabolic mechanisms, and to a lesser extent by metal speciation in the exposure medium.

Pavlaki M. D., Morgado R. G., van Gestel C. A. M., Calado R., Soares A. M. V. M. & Loureiro S., 2017. Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa. Ecotoxicology and Environmental Safety 145:142–149. Article (subscription required).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading