Calcification responses to diurnal variation in seawater carbonate chemistry by the coral Acropora formosa

Significant diurnal variation in seawater carbonate chemistry occurs naturally in many coral reef environments, yet little is known of its effect on coral calcification. Laboratory studies on the response of corals to ocean acidification have manipulated the carbonate chemistry of experimental seawater to compare calcification rate changes under present-day and predicted future mean pH/Ωarag conditions. These experiments, however, have focused exclusively on differences in mean chemistry and have not considered diurnal variation. The aim of this study was to compare calcification responses of branching coral Acropora formosa under conditions with and without diurnal variation in seawater carbonate chemistry. To achieve this aim, we explored (1) a method to recreate natural diurnal variation in a laboratory experiment using the biological activities of a coral-reef mesocosm, and (2) a multi-laser 3D scanning method to accurately measure coral surface areas, essential to normalize their calcification rates. We present a cost- and time-efficient method of coral surface area estimation that is reproducible within 2% of the mean of triplicate measurements. Calcification rates were compared among corals subjected to a diurnal range in pH (total scale) from 7.8 to 8.2, relative to those at constant pH values of 7.8, 8.0 or 8.2. Mean calcification rates of the corals at the pH 7.8–8.2 (diurnal variation) treatment were not statistically different from the pH 8.2 treatment and were 34% higher than the pH 8.0 treatment despite similar mean seawater pH and Ωarag. Our results suggest that calcification of adult coral colonies may benefit from diurnal variation in seawater carbonate chemistry. Experiments that compare calcification rates at different constant pH without considering diurnal variation may have limitations.

Chan W. Y. & Eggins S. M., in press. Calcification responses to diurnal variation in seawater carbonate chemistry by the coral Acropora formosa. Coral Reefs. Article (subscription required).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading