Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment

Highlights

  • CO2 seeps at two coral reefs in Papua New Guinea were used as natural analogues of ocean acidification.
  • Elevated CO2 affected recruitment in marine invertebrate communities.
  • Calcified recruits of reef-dwelling Foraminifera, polychaetes, gastropods, and bivalves were vulnerable to acidification.
  • Amphipods and copepods, which are important prey taxa, were adversely affected by acidification caused by elevated CO2.


Abstract

Rising atmospheric CO2 concentrations are causing ocean acidification by reducing seawater pH and carbonate saturation levels. Laboratory studies have demonstrated that many larval and juvenile marine invertebrates are vulnerable to these changes in surface ocean chemistry, but challenges remain in predicting effects at community and ecosystem levels. We investigated the effect of ocean acidification on invertebrate recruitment at two coral reef CO2 seeps in Papua New Guinea. Invertebrate communities differed significantly between ‘reference’ (median pH 7.97, 8.00), ‘high CO2’ (median pH 7.77, 7.79), and ‘extreme CO2’ (median pH 7.32, 7.68) conditions at each reef. There were also significant reductions in calcifying taxa, copepods and amphipods as CO2 levels increased. The observed shifts in recruitment were comparable to those previously described in the Mediterranean, revealing an ecological mechanism by which shallow coastal systems are affected by near-future levels of ocean acidification.

Allen R., Foggo A., Fabricius K, Balistreri A., Hall-Spencer J. M., in press.
Tropical CO2 seeps reveal the impact of ocean acidification on coral reef invertebrate recruitment. Marine Pollution Bulletin. Article (subscription required).


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading