Archive for May, 2016

Future acidification of marginal seas: A comparative study of the Japan/ East Sea and the South China Sea

The response of marginal (peripheral) seas to ocean acidification on short and long time scales is not well established. Through modeling, we examine the future acidification of two adjacent marginal seas, the South China Sea (SCS) and the Japan/East Sea (J/ES). Our results illustrate the importance of unique features in determining their acidification. The J/ES basin will become completely undersaturated with regard to calcite rapidly in the next few decades, while the SCS basin will experience relatively slower acidification. During its acidification, the J/ES will continually act as a sink for atmospheric CO2, whereas the SCS will temporarily switch from a source to a sink during the peak pCO2 interval, only to return slowly to being a source again. Marginal sea acidification will be determined by multiple factors, including their connections with the open ocean and their unique physical and biogeochemical dynamics, in addition to the level of atmospheric CO2.

Continue reading ‘Future acidification of marginal seas: A comparative study of the Japan/ East Sea and the South China Sea’

Parasitic infection alters the physiological response of a marine gastropod to ocean acidification

Increased hydrogen ion concentration and decreased carbonate ion concentration in seawater are the most physiologically relevant consequences of ocean acidification (OA). Changes to either chemical species may increase the metabolic cost of physiological processes in marine organisms, and reduce the energy available for growth, reproduction and survival. Parasitic infection also increases the energetic demands experienced by marine organisms, and may reduce host tolerance to stressors associated with OA. This study assessed the combined metabolic effects of parasitic infection and OA on an intertidal gastropod, Zeacumantus subcarinatus. Oxygen consumption rates and tissue glucose content were recorded in snails infected with one of three trematode parasites, and an uninfected control group, maintained in acidified (7·6 and 7·4 pH) or unmodified (8·1 pH) seawater. Exposure to acidified seawater significantly altered the oxygen consumption rates and tissue glucose content of infected and uninfected snails, and there were clear differences in the magnitude of these changes between snails infected with different species of trematode. These results indicate that the combined effects of OA and parasitic infection significantly alter the energy requirements of Z. subcarinatus, and that the species of the infecting parasite may play an important role in determining the tolerance of marine gastropods to OA.

Continue reading ‘Parasitic infection alters the physiological response of a marine gastropod to ocean acidification’

Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata

Ocean acidification (OA) is the reduction in seawater pH due to the absorption of human-released CO2 by the world’s oceans. The average surface oceanic pH is predicted to decline by 0.4 units by 2100. However, kelp metabolically modifies seawater pH via photosynthesis and respiration in some temperate coastal systems, resulting in daily pH fluctuations of up to ±0.45 units. It is unknown how these fluctuations in pH influence the growth and physiology of the kelp, or how this might change with OA. In laboratory experiments that mimicked the most extreme pH fluctuations measured within beds of the canopy-forming kelp Ecklonia radiata in Tasmania, the growth and photosynthetic rates of juvenile E. radiata were greater under fluctuating pH (8.4 in the day, 7.8 at night) than in static pH treatments (8.4, 8.1, 7.8). However, pH fluctuations had no effect on growth rates and a negative effect on photosynthesis when the mean pH of each treatment was reduced by 0.3 units. Currently, pH fluctuations have a positive effect on E. radiata but this effect could be reversed in the future under OA, which is likely to impact the future ecological dynamics and productivity of habitats dominated by E. radiata.

Continue reading ‘Ocean acidification reverses the positive effects of seawater pH fluctuations on growth and photosynthesis of the habitat-forming kelp, Ecklonia radiata’

Colony-specific calcification and mortality under ocean acidification in the branching coral Montipora digitata

Ocean acidification (OA) threatens calcifying marine organisms including reef-building corals. In this study, we examined the OA responses of individual colonies of the branching scleractinian coral Montipora digitata. We exposed nubbins of unique colonies (n = 15) to ambient or elevated pCO2 under natural light and temperature regimes for 110 days. Although elevated pCO2 exposure on average reduced calcification, individual colonies showed unique responses ranging from declines in positive calcification to negative calcification (decalcification) to no change. Similarly, mortality was greater on average in elevated pCO2, but also showed colony-specific patterns. High variation in colony responses suggests the possibility that ongoing OA may lead to natural selection of OA-tolerant colonies within a coral population.

Continue reading ‘Colony-specific calcification and mortality under ocean acidification in the branching coral Montipora digitata’

Climate change implications for Torres Strait fisheries: assessing vulnerability to inform adaptation

Climate change impacts on marine fisheries are being observed in tropical regions, including northern Australia and the Pacific. In the Torres Strait, Islanders have a long association with their sea country that holds significant cultural, social and economic importance. Future impacts of climate change on marine fisheries stocks and supporting habitats will affect Torres Strait Islander communities. We assessed the relative vulnerability of 15 key fishery species in Torres Strait using a semi-quantitative framework modified from the Intergovernmental Panel on Climate Change that integrated both ecological and social indicators of exposure, sensitivity and adaptive capacity. The assessment identified species with high, medium and low vulnerability to projected climate change in 2030. The species assessed as having the highest vulnerability were: Holothuria whitmaei (black teatfish), Pinctada margaritifera (black-lipped pearl oyster), Dugong dugon (dugong), and Trochus niloticus (trochus). A separate prioritisation process that considered the cultural and economic value of species identified three high priority species for future management focus: D. dugon, marine turtles (principally Chelonia mydas) and Panulirus ornatus (tropical rock lobster). These results can inform fishers and managers to prepare for the effects of climate change and minimise impacts. The relatively healthy condition of most fisheries in the Torres Strait is likely to assist successful adaptation.

Continue reading ‘Climate change implications for Torres Strait fisheries: assessing vulnerability to inform adaptation’

Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change

DNA methylation is an epigenetic mark that plays an inadequately understood role in gene regulation, particularly in nonmodel species. Because it can be influenced by the environment, DNA methylation may contribute to the ability of organisms to acclimatize and adapt to environmental change. We evaluated the distribution of gene body methylation in reef-building corals, a group of organisms facing significant environmental threats. Gene body methylation in six species of corals was inferred from in silico transcriptome analysis of CpG O/E, an estimate of germline DNA methylation that is highly correlated with patterns of methylation enrichment. Consistent with what has been documented in most other invertebrates, all corals exhibited bimodal distributions of germline methylation suggestive of distinct fractions of genes with high and low levels of methylation. The hypermethylated fractions were enriched with genes with housekeeping functions, while genes with inducible functions were highly represented in the hypomethylated fractions. High transcript abundance was associated with intermediate levels of methylation. In three of the coral species, we found that genes differentially expressed in response to thermal stress and ocean acidification exhibited significantly lower levels of methylation. These results support a link between gene body hypomethylation and transcriptional plasticity that may point to a role of DNA methylation in the response of corals to environmental change.

Continue reading ‘Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change’

Coral skeletal geochemistry as a monitor of inshore water quality

Coral reefs maintain extraordinary biodiversity and provide protection from tsunamis and storm surge, but inshore coral reef health is degrading in many regions due to deteriorating water quality. Deconvolving natural and anthropogenic changes to water quality is hampered by the lack of long term, dated water quality data but such records are required for forward modelling of reef health to aid their management. Reef corals provide an excellent archive of high resolution geochemical (trace element) proxies that can span hundreds of years and potentially provide records used through the Holocene. Hence, geochemical proxies in corals hold great promise for understanding changes in ancient water quality that can inform broader oceanographic and climatic changes in a given region. This article reviews and highlights the use of coral-based trace metal archives, including metal transported from rivers to the ocean, incorporation of trace metals into coral skeletons and the current ‘state of the art’ in utilizing coral trace metal proxies as tools for monitoring various types of local and regional source-specific pollution (river discharge, land use changes, dredging and dumping, mining, oil spills, antifouling paints, atmospheric sources, sewage). The three most commonly used coral trace element proxies (i.e., Ba/Ca, Mn/Ca, and Y/Ca) are closely associated with river runoff in the Great Barrier Reef, but considerable uncertainty remains regarding their complex biogeochemical cycling and controlling mechanisms. However, coral-based water quality reconstructions have suffered from a lack of understanding of so-called vital effects and early marine diagenesis. The main challenge is to identify and eliminate the influence of extraneous local factors in order to allow accurate water quality reconstructions and to develop alternate proxies to monitor water pollution. Rare earth elements have great potential as they are self-referencing and reflect basic terrestrial input.

Continue reading ‘Coral skeletal geochemistry as a monitor of inshore water quality’

Late Paleocene-middle Eocene benthic foraminifera on a Pacific seamount (Allison Guyot, ODP Site 865): Greenhouse climate and superimposed hyperthermal events

We investigated the response of late Paleocene-middle Eocene (~60–37.5 Ma) benthic foraminiferal assemblages to long-term climate change and hyperthermal events including the Paleocene-Eocene Thermal Maximum (PETM) at Ocean Drilling Program (ODP) Site 865 on Allison Guyot, a seamount in the Mid-Pacific Mountains. Seamounts are isolated deep-sea environments where enhanced current systems interrupt bentho-pelagic coupling, and fossil assemblages from such settings have been little evaluated. Assemblages at Site 865 are diverse and dominated by cylindrical calcareous taxa with complex apertures, an extinct group which probably lived infaunally. Dominance of an infaunal morphogroup is unexpected in a highly oligotrophic setting, but these forms may have been shallow infaunal suspension feeders, which were ecologically successful on the current-swept seamount. The magnitude of the PETM extinction at Site 865 was similar to other sites globally, but lower diversity postextinction faunas at this location were affected by ocean acidification as well as changes in current regime, which might have led to increased nutrient supply through trophic focusing. A minor hyperthermal saw less severe effects of changes in current regime, with no evidence for carbonate dissolution. Although the relative abundance of infaunal benthic foraminifera has been used as a proxy for surface productivity through bentho-pelagic coupling, we argue that this proxy can be used only in the absence of changes in carbonate saturation and current-driven biophysical linking.

Continue reading ‘Late Paleocene-middle Eocene benthic foraminifera on a Pacific seamount (Allison Guyot, ODP Site 865): Greenhouse climate and superimposed hyperthermal events’

Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate

Body size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad range in body size (two to three orders of magnitude difference in body mass), we addressed the impact of climate change on the sea urchin Heliocidaris erythrogramma in context with climate projections for southeast Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23°C) and two pH levels (7.5 and 8.0), at which they were maintained for 2 months. Identical experimental trials separated by several weeks validated the fact that a new physiological steady state had been reached, otherwise known as acclimation. The relationship between body size, temperature and acidification on the metabolic rate of H. erythrogramma was strikingly stable. Both stressors caused increases in metabolic rate: 20% for temperature and 19% for pH. Combined effects were additive: a 44% increase in metabolism. Body size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for H. erythrogramma, near-future climate change will incur a substantial energetic cost.

Continue reading ‘Sea urchins in a high-CO2 world: partitioned effects of body size, ocean warming and acidification on metabolic rate’

Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae

The increasing amount of dissolved anthropogenic CO2 has caused a drop in pH-values in the open ocean known as ocean acidification. This change in seawater carbonate chemistry has been shown to have a negative effect on a number of marine organisms. Early life stages are the most vulnerable, and especially the organisms that produce calcified structures in the phylum Mollusca. Few studies have looked at effects on scallops, and this is the first study presented including fed larvae of the great scallop (Pecten maximus) followed until day 14 post-fertilization. Fertilized eggs from unexposed parents were exposed to three levels of pCO2 using four replicate units: 465 (ambient), 768 and 1294 μatm, corresponding to pHNBS of 7.94, 7.74 and 7.54, respectively. All of the observed parameters were negatively affected by elevated pCO2: survival, larval development, shell growth and normal shell development. The latter was observed to be affected only two days after fertilization. Negative effects on the fed larvae at day 7 were similar to what was shown earlier for unfed P. maximus larvae. Growth rate in the group at 768 μatm seemed to decline after day 7, indicating that the ability to overcome the environmental change at moderately elevated pCO2 was lost over time. Food availability may not decrease the sensitivity to elevated pCO2 in scallop larvae. Unless genetic adaptation and acclimatization counteract the negative effects of long term elevated pCO2, populations of scallops may be negatively affected by ocean acidification in the future.

Continue reading ‘Sensitivity towards elevated pCO2 in great scallop (Pecten maximus Lamarck) embryos and fed larvae’


Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,400,098 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives