SOCAN webinar: “Dramatic variability of the coastal North Carolina carbonate system across multiple timescales”, 6 October 2015

Date & time: Tuesday, 6 October 2015, 12:00pm ET

Speaker: Zackary Johnson, PhD in Marine Botany (Duke University), Postdoc in Marine Microbial Ecology (MIT); currently Arthur P. Kaupe Assistant Professor of Molecular Biology at Duke Marine Laboratory, Duke University

Link to register: http://bit.ly/1L2VX0h

Abstract

Increased atmospheric carbon dioxide (CO2) from anthropogenic sources is acidifying marine environments with potentially dramatic implications for the physical, chemical and biological functioning of these ecosystems. If current trends continue, mean ocean pH is expected to decrease by ~0.2 units over the next ~50 years. Yet, at the same time there is substantial spatial and temporal variability in pH and other carbon system parameters in the ocean resulting in regions that already exceed long term projected pH changes, suggesting that short-term variability is an important layer of complexity on top of long term acidification. Thus, in order to develop predictions of future climate change impacts including ocean acidification, there is a critical need to characterize the natural range and variability of the marine CO2 system and the mechanisms responsible for this variability. Here we examine pH and dissolved inorganic carbon (DIC) variability at time intervals spanning 1 hour to >5 years in a dynamic coastal marine system to quantify variability of the carbon system at multiple time scales.

Daily and seasonal variability of the carbon system is largely driven by temperature, alkalinity and the balance between primary production and respiration, but high frequency variability (hours to days) is further influenced by water mass movement (e.g. tides) and stochastic events (e.g. storms). Both annual variability (~0.3 units) and diurnal variability (~0.1 units) in coastal ocean acidity are similar in magnitude to long term projections associated with increasing atmospheric CO2 and their drivers highlight the importance of characterizing the complete carbonate system (and not just pH). Short term variability of ocean carbon parameters may already exert significant pressure on some coastal marine ecosystems with implications for ecology, biogeochemistry and evolution and this shorter term variability layers additive effects and complexity, including extreme values, on top of long term trends in ocean acidification.

More information and registration.


  • Reset

Subscribe

OA-ICC Highlights


%d bloggers like this: