Archive for October, 2014

Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform

Experimental studies have shown that coral calcification rates are dependent on light, nutrients, food availability, temperature, and seawater aragonite saturation (Ω arag), but the relative importance of each parameter in natural settings remains uncertain. In this study, we applied Calcein fluorescent dyes as time indicators within the skeleton of coral colonies (n = 3) of Porites astreoides and Diploria strigosa at three study sites distributed across the northern Bermuda coral reef platform. We evaluated the correlation between seasonal average growth rates based on coral density and extension rates with average temperature, light, and seawater Ω arag in an effort to decipher the relative importance of each parameter. The results show significant seasonal differences among coral calcification rates ranging from summer maximums of 243 ± 58 and 274 ± 57 mmol CaCO3 m−2 d−1 to winter minimums of 135 ± 39 and 101 ± 34 mmol CaCO3 m−2 d−1 for P. astreoides and D. strigosa, respectively. We also placed small coral colonies (n = 10) in transparent chambers and measured the instantaneous rate of calcification under light and dark treatments at the same study sites. The results showed that the skeletal growth of D. strigosa and P. astreoides, whether hourly or seasonal, was highly sensitive to Ω arag. We believe this high sensitivity, however, is misleading, due to covariance between light and Ω arag, with the former being the strongest driver of calcification variability. For the seasonal data, we assessed the impact that the observed seasonal differences in temperature (4.0 °C), light (5.1 mol photons m−2 d−1), and Ω arag (0.16 units) would have on coral growth rates based on established relationships derived from laboratory studies and found that they could account for approximately 44, 52, and 5 %, respectively, of the observed seasonal change of 81 ± 14 mmol CaCO3 m−2 d−1. Using short-term light and dark incubations, we show how the covariance of light and Ω arag can lead to the false conclusion that calcification is more sensitive to Ω arag than it really is.

Continue reading ‘Multiple driving factors explain spatial and temporal variability in coral calcification rates on the Bermuda platform’

Modelling the effects of climate change on a Caribbean coral reef food web

Global climate change and local anthropogenic pressures are among the primary factors leading to the decline of functional biodiversity and critical habitats in coral reefs. Coral bleaching, the potential decreases in dissolved oxygen concentration (deoxygenation) and pH (acidification) in the oceans can induce severe changes in coral reef ecosystem biodiversity and functionality. The main objective of this study was to apply four Ecopath with Ecosim models of a Caribbean coral reef system to individually and collectively model the effects of coral bleaching on the trophic web, deoxygenation on fish, and acidification on calcifying organisms. These three sources of stress were used as forcing functions on several trophic groups depending on the model. The forcing functions were scaled according to the species’ responses achieved in previously tested climate change marine models. For the bleaching model, a mediation function was also considered that represents the degree of coral reef protection on small and intermediate fish groups. The dynamic models were constructed from an extensive database of 171 reef fish species (abundance and biomass) and benthic communities from 13 coral reefs that were evenly distributed parallel to approximately 400 km of the Mexican Caribbean coast as well as fishery landings in this area. Simulations driven with these different forcing and mediation functions predicted different changes in the biomasses of fish and non-fish functional groups as well as the biomass of the functional groups of fished species. Coral bleaching and pH reduction caused a phase shift to a decrease in coral biomass and an increase in primary producer biomass. This shift produced a cascading decrease in the biomass of small and intermediate fish groups. Additionally, the fished functional group biomass increased with coral bleaching but decreased with the effects of decreased oxygen on fish and pH on calcifying organisms. The biomasses of certain macroinvertebrate functional groups were predicted to respond favourably to the combined effect of the sources of stress. However, when all the sources of stress were combined, we found a general decrease of biomass in fish, non-fish, and some commercially valuable fish and macroinvertebrate functional groups, suggesting that the combined effects of stress induced synergistic effects as a result of global climate change and overfishing, which can result in a potential loss of biodiversity and ecosystem services in coral reefs.

Continue reading ‘Modelling the effects of climate change on a Caribbean coral reef food web’

A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions (update)

Phaeocystis globosa, a red tide alga, often forms blooms in or adjacent to coastal waters and experiences changes in pH and seawater carbonate chemistry caused by either diel/periodic fluctuation in biological activity, human activity or, in the longer term, ocean acidification due to atmospheric CO2 rise. We examined the photosynthetic physiology of this species while growing it under different pH levels induced by CO2 enrichment and investigated its acclimation to carbonate chemistry changes under different light levels. Short-term exposure to reduced pHnbs (7.70) decreased the alga’s photosynthesis and light use efficiency. However, acclimation to the reduced pH level for 1–19 generations led to recovered photosynthetic activity, being equivalent to that of cells grown under pH 8.07 (control), though such acclimation required a different time span (number of generations) under different light regimes. The low-pH-grown cells increased their contents of chlorophyll and carotenoids with prolonged acclimation to the acidification, with increased photosynthetic quantum yield and decreased non-photochemical quenching. The specific growth rate of the low-pH-grown cells also increased to emulate that grown under the ambient pH level. This study clearly shows that \textit{Phaeocystis globosa} is able to acclimate to seawater acidification by increasing its energy capture and decreasing its non-photochemical energy loss.

Continue reading ‘A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions (update)’

Diverse trends in shell weight of three Southern Ocean pteropod taxa collected with Polar Frontal Zone sediment traps from 1997 to 2007

The impact of ocean acidification on key ocean calcifiers is predicted to be imminent, particularly in high-latitude ecosystems. Long-term field observations are essential to ground truth predictions of change in regional ecosystems. Here, we report on aragonitic pteropods collected to sediment traps at 800 m depth at 54°S, 140°E in the Polar Frontal Zone (PFZ) of the Southern Ocean from 1997 to 2007. Statistically significant trends were not identified in either mass or number flux from 1997 to 2007; however, differences emerged in decadal trends seen in shell weight for each of the three common taxa collected: Limacina helicina antarctica forma antarctica shells became significantly lighter (P < 0.05), L. retroversa australis shells became significantly heavier (P < 0.05) and L. helicina antarctica forma rangi shells did not change significantly. These results suggest that factors other than ocean acidification affect pteropod population variations on decadal timescales, with the potential to either amplify or counter the impact of decreasing aragonite saturation state, at least in the short term. Comparison to sea surface temperature and chlorophyll biomass did not identify these as significant drivers of the observed changes, and attribution across these multiple variables requires better understanding of pteropod physiology and ecology. Our PFZ pelagic pteropod observations provide a reference for evaluation of southern polar pteropod responses to changing ocean conditions in coming decades. Importantly, these data also raise the issue of taxonomic care when monitoring the region for impacts of ocean acidification on calcifiers.

Continue reading ‘Diverse trends in shell weight of three Southern Ocean pteropod taxa collected with Polar Frontal Zone sediment traps from 1997 to 2007’

Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus

As global warming continues over the coming century, marine organisms will experience a warmer, more acidic ocean. Although these stressors may behave antagonistically or synergistically and will impact organisms both directly (i.e., physiologically) and indirectly (i.e., through altered species interactions), few studies have examined the complexities of these effects in combination. To address these uncertainties, we examined the independent and combined effects of elevated temperature and pCO2 on the physiology of the adult sporophyte stage of giant kelp, Macrocystis pyrifera, and the grazing of the purple sea urchin Strongylocentrotus purpuratus. While elevating pCO2 alone had no effect on M. pyrifera growth or photosynthetic carbon uptake, elevating temperature alone resulted in a significant reduction in both. However, when M. pyrifera was grown under elevated temperature and pCO2 together, growth and photosynthetic carbon uptake significantly increased relative to ambient conditions, suggesting an interaction of these factors on photosynthetic physiology. S. purpuratus held under future conditions generally exhibited reduced growth, and smaller gonads than urchins held under present-day conditions. However, urchins fed kelp grown under future conditions showed higher growth rates, partially ameliorating this effect. Feeding rates were variable over the course of the experiment, with only the first feeding rate experiment showing significantly lower rates for urchins held under future conditions. Together, these data suggest that M. pyrifera may benefit physiologically from a warmer, more acidic (i.e., higher pCO2) ocean while S. purpuratus will likely be impacted negatively. Given that kelp-urchin interactions can be important to kelp forest structure, changes to either of these populations may have serious consequences for many coastal environments.

Continue reading ‘Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus’

Variability in the skeletal mineralogy of temperate bryozoans: the relative influence of environmental and biological factors

Bryozoans exhibit a highly variable geochemistry within their calcium carbonate skeletons. Previous studies have predominantly attributed this variability to differences in seawater temperature influencing the relative deposition of aragonite and calcite, and the extent of magnesium incorporation into the calcite lattice. However, the patterns and scale of this variability have not been examined in detail. We conducted a high-replicate, multi-site study on the skeletal mineralogy of temperate Northern Hemisphere bryozoans to investigate the range of skeletal aragonite and Mg-calcite variability between species and the relative influence of environmental and biological factors on skeletal biogeochemistry. During a cruise in May 2012 in Scapa Flow, Orkney, Northeast Scotland, 480 specimens from 3 bryozoan species were collected by SCUBA diving. Samples were obtained from 5 study sites with similar depths and physical characteristics. All specimens were collected within the same week and were selected to be of similar size, age and breeding status. The results of X-ray diffraction analysis showed that wt% MgCO3 in calcite and wt% aragonite in total CaCO3 were statistically different between sites for all species. This may be explained by differential population connectivity between sites influenced by the tidal regimes of Scapa Flow. No temperate bryozoan species showed the expected positive trends of increasing wt% MgCO3 in calcite or wt% aragonite in total CaCO3 with seawater temperature. Based on the data generated in this study, we suggest that both environmental and biological factors are involved in the control of skeletal mineralogy in some temperate bryozoan species.

Continue reading ‘Variability in the skeletal mineralogy of temperate bryozoans: the relative influence of environmental and biological factors’

The effects of pH on acoustic transmission loss in an estuary

Increasing atmospheric CO2 will cause the ocean to become more acidic with pH values predicted to be more than 0.3 units lower over the next 100 years. These lower pH values have the potential to reduce the absorption component of transmission loss associated with dissolved boron. Transmission loss effects have been well studied for deep water where pH is relatively stable over time-scales of many years. However, estuarine and coastal pH can vary daily or seasonally by about 1 pH unit and cause fluctuations in one-way acoustic transmission loss of 2 dB over a range of 10 km at frequencies of 1 kHz or higher. These absorption changes can affect the sound pressure levels received by animals due to identifiable sources such as impact pile driving. In addition, passive and active sonar performance in these estuarine and coastal waters can be affected by these pH fluctuations. Absorption changes in these shallow water environments offer a potential laboratory to study their effect on ambient noise due to distributed sources such as shipping and wind. We introduce an inversion technique based on perturbation methods to estimate the depth-dependent pH profile from measurements of normal mode attenuation.

Continue reading ‘The effects of pH on acoustic transmission loss in an estuary’

Effects of ocean acidification on the biogenic composition of the sea-surface microlayer: Results from a mesocosm study

The sea-surface microlayer (SML) is the ocean’s uppermost boundary to the atmosphere and in control of climate relevant processes like gas exchange and emission of marine primary organic aerosols (POA). The SML represents a complex surface film including organic components like polysaccharides, proteins, and marine gel particles, and harbors diverse microbial communities. Despite the potential relevance of the SML in ocean-atmosphere interactions still little is known about its structural characteristics and sensitivity to a changing environment such as increased oceanic uptake of anthropogenic CO2. Here, we report results of a large scale mesocosm study, indicating that ocean acidification can affect the abundance and activity of microorganisms during phytoplankton blooms, resulting in changes in composition and dynamics of organic matter in the SML. Our results reveal a potential coupling between anthropogenic CO2 emissions and the biogenic properties of the SML, pointing to a hitherto disregarded feedback process between ocean and atmosphere under climate change.

Continue reading ‘Effects of ocean acidification on the biogenic composition of the sea-surface microlayer: Results from a mesocosm study’

Science chief warns on acid oceans

_78487604_78487603The UK’s chief scientist says the oceans face a serious and growing risk from man-made carbon emissions.

The oceans absorb about a third of the CO2 that’s being produced by industrial society, and this is changing the chemistry of seawater.

Sir Mark Walport warns that the acidity of the oceans has increased by about 25% since the industrial revolution, mainly thanks to manmade emissions.

CO2 reacts with the sea water to form carbonic acid.

He told BBC News: “If we carry on emitting CO2 at the same rate, ocean acidification will create substantial risks to complex marine food webs and ecosystems.”

He said the current rate of acidification is believed to be unprecedented within the last 65 million years – and may threaten fisheries in future.

Continue reading ‘Science chief warns on acid oceans’

Water flow modulates the response of coral reef communities to ocean acidification

By the end of the century coral reefs likely will be affected negatively by ocean acidification (OA), but both the effects of OA on coral communities and the crossed effects of OA with other physical environmental variables are lacking. One of the least considered physical parameters is water flow, which is surprising considering its strong role in modulating the physiology of reef organisms and communities. In the present study, the effects of flow were tested on coral reef communities maintained in outdoor flumes under ambient pCO2 and high pCO2 (1300 μatm). Net calcification of coral communities, including sediments, was affected by both flow and pCO2 with calcification correlated positively with flow under both pCO2 treatments. The effect of flow was less evident for sediments where dissolution exceeded precipitation of calcium carbonate under all flow speeds at high pCO2. For corals and calcifying algae there was a strong flow effect, particularly at high pCO2 where positive net calcification was maintained at night in the high flow treatment. Our results demonstrate the importance of water flow in modulating the coral reef community response to OA and highlight the need to consider this parameter when assessing the effects of OA on coral reefs.

Continue reading ‘Water flow modulates the response of coral reef communities to ocean acidification’

Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,427,780 hits


Ocean acidification in the IPCC AR5 WG II

OUP book