Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability

We investigated the responses of the ecologically dominant Antarctic phytoplankton species Phaeocystis antarctica (a prymnesiophyte) and Fragilariopsis cylindrus (a diatom) to a clustered matrix of three global change variables (CO2, mixed-layer depth, and temperature) under both iron (Fe)-replete and Fe-limited conditions based roughly on the Intergovernmental Panel on Climate Change (IPCC) A2 scenario: (1) Current conditions, 39 Pa (380 ppmv) CO2, 50 µmol photons m−2 s−1 light, and 2°C; (2) Year 2060, 61 Pa (600 ppmv) CO2, 100 µmol photons m−2 s−1 light, and 4°C; (3) Year 2100, 81 Pa (800 ppmv) CO2, 150 µmol photons m−2 s−1 light, and 6°C. The combined interactive effects of these global change variables and changing Fe availability on growth, primary production, and cell morphology are species specific. A competition experiment suggested that future conditions could lead to a shift away from P. antarctica and toward diatoms such as F. cylindrus. Along with decreases in diatom cell size and shifts from prymnesiophyte colonies to single cells under the future scenario, this could potentially lead to decreased carbon export to the deep ocean. Fe : C uptake ratios of both species increased under future conditions, suggesting phytoplankton of the Southern Ocean will increase their Fe requirements relative to carbon fixation. The interactive effects of Fe, light, CO2, and temperature on Antarctic phytoplankton need to be considered when predicting the future responses of biology and biogeochemistry in this region.

Xu K., Fu F.-X. & Hutchins D. A., 2014. Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability. Limnology & Oceanography 59(6):1919-1931. Article.

0 Responses to “Comparative responses of two dominant Antarctic phytoplankton taxa to interactions between ocean acidification, warming, irradiance, and iron availability”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,442,512 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book

Archives