Organic matter production response to CO2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions

Increase in seawater pCO2 and the corresponding decrease in pH caused by the increasing atmospheric CO2 concentration (i.e., ocean acidification) may affect organic matter production by phytoplankton communities. Organic matter production forms the basis of marine food webs and plays a crucial role in oceanic CO2 uptake through the biological carbon pump, and hence will potentially affect future marine ecosystem dynamics. However, responses of organic matter production in open ocean plankton ecosystems to CO2 increase have not been fully examined. We conducted on-deck microcosm experiments using high nutrient, low chlorophyll (HNLC) waters in the western subarctic Pacific and oceanic Bering Sea basin in summer 2008 and 2009, respectively, to examine the impacts of elevated CO2 on particulate and dissolved organic matter (i.e., POM and DOM, respectively) production. Iron deficient natural plankton communities were incubated for 7–14 days under multiple CO2 levels with and without iron enrichments (hereafter +Fe and −Fe treatments, respectively). By combining with our previous experiments at two sites, we created a comprehensive dataset on responses of organic matter production to CO2 increase during macronutrient replete conditions in HNLC waters. Significant differences in net particulate organic carbon production among CO2 treatments were observed only in the −Fe treatments, whereas that in net dissolved organic carbon production were mainly observed in the +Fe treatments, suggesting that CO2 may affect different processes depending on the Fe nutritional status. However, impacts of CO2 were not consistent among experiments and were much smaller than the consistent positive effects of Fe enrichment. In contrast, no significant differences among the CO2 treatments were observed for organic carbon partitioning into POM and DOM, and carbon to nitrogen ratio of net produced POM. We conclude that CO2 does not play a primary role, but could have secondary effects on controlling the organic matter production under macronutrient replete conditions in HNLC waters. On the other hand, in a nutrient-depleted, declining phase of the phytoplankton bloom induced by Fe enrichment, carbon overconsumption was found in an experiment with elevated CO2 conditions suggesting that CO2 impacts might become more significant in such environments.

Yoshimura T., Sugie K., Endo H., Suzuki K., Nishioka J. & Ono T., in press. Organic matter production response to CO2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions. Deep Sea Research Part I: Oceanographic Research Papers. Article (subscription required).

0 Responses to “Organic matter production response to CO2 increase in open subarctic plankton communities: Comparison of six microcosm experiments under iron-limited and -enriched bloom conditions”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,452,923 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book