Impact of aragonite saturation state changes on migratory pteropods

Thecosome pteropods play a key role in the food web of various marine ecosystems and they calcify, secreting the unstable CaCO3 mineral aragonite to form their shell material. Here, we have estimated the effect of ocean acidification on pteropod calcification by exploiting empirical relationships between their gross calcification rates (CaCO3 precipitation) and aragonite saturation state Ωa, combined with model projections of future Ωa. These were corrected for modern model-data bias and taken over the depth range where pteropods are observed to migrate vertically. Results indicate large reductions in gross calcification at temperate and high latitudes. Over much of the Arctic, the pteropod Limacina helicina will become unable to precipitate CaCO3 by the end of the century under the IPCC SRES A2 scenario. These results emphasize concerns over the future of shelled pteropods, particularly L. helicina in high latitudes. Shell-less L. helicina are not known to have ever existed nor would we expect them to survive. Declines of pteropod populations could drive dramatic ecological changes in the various pelagic ecosystems in which they play a critical role.

Comeau S., Gattuso J.-P., Nisumaa A.-M., & Orr J., in press. Impact of aragonite saturation state changes on migratory pteropods. Proceedings of the Royal Society B doi:10.1098/rspb.2011.0910. Article (subscription required).

  • Reset


OA-ICC Highlights

%d bloggers like this: