Compensatory response of the unicellular-calcifying alga Emiliania huxleyi (Coccolithophoridales, Haptophyta) to ocean acidification

Ocean acidification damages calcareous organisms, such as calcifying algae, foraminifera, corals, and shells. In this study, we made a device equipped with a Clark-type oxygen electrode and a pH-stat to examine how the most abundant calcifying phytoplankton, the coccolithophorid Emiliania huxleyi, responded to acidification and alkalization of the seawater medium. When E. huxleyi was incubated at pH 8.2, close to oceanic pH, the medium was alkalized during photosynthesis, and the alkalization rate [determined as μmol HCl added (mg Chl)−1 h−1] was identical to the activity of photosynthesis [determined as μmol O2 evolved (mg Chl)−1 h−1]. When pH was maintained at 7.2 by the pH-stat, alkalization activity was stimulated and exceeded photosynthetic activity, resulting in an increase in the ratio of alkalization to photosynthesis (Alk/PS). On the other hand, no alkalization and photosynthesis were observed at pH 9.2. In contrast, acidification of seawater was observed in the dark because of the release of respiratory CO2 from cells at pH 8.2–9.2, but not at pH 7.2. When orthophosphate was rapidly depleted within a day in the batch culture, intracellular calcification gradually increased, and both photosynthesis and alkalization decreased gradually. During the period the Alk/PS ratio also decreased gradually. These results indicate that E. huxleyi possesses an ability to compensate for the acidification of seawater when photosynthesis is more actively driven than respiration. These results suggest that the E. huxleyi cells may not be severely damaged by oceanic acidification during photosynthesis because of their homeostatic function to avoid negative effects on cellular activity. Finally, we concluded that E. huxleyi cells possess a buffering ability to reduce acidification effects when photosynthesis is actively driven.

Fukuda S.-Y., Suzuki I., Hama T., & Shiraiwa Y., in press. Compensatory response of the unicellular-calcifying alga Emiliania huxleyi (Coccolithophoridales, Haptophyta) to ocean acidification. Journal of Oceanography doi:10.1007/s10872-011-0001-z. Article (subscription required).

0 Responses to “Compensatory response of the unicellular-calcifying alga Emiliania huxleyi (Coccolithophoridales, Haptophyta) to ocean acidification”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Follow AnneMarin on Twitter

Archives

Powered by FeedBurner

Blog Stats

  • 1,450,289 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book