Recent increases in atmospheric carbon dioxide have resulted in rising aqueous CO2 concentrations that lower the pH of the oceans (Caldeira and Wickett 2003, 2005, Doney et al., 2009). It is estimated that over the next 100 years, the pH of the surface oceans will decrease by ~0.4 pH units (Orr et al., 2005), which is expected to hinder the calcifying capabilities of numerous marine organisms. Previous field work (Hall-Spencer et al., 2008) indicates that ocean acidification will negatively impact calcifying species; however, to date, very little is known about the long-term impacts of ocean acidification from the in-situ study of coral reef ecosystems. The Yucatán Peninsula of Quintana Roo, Mexico, represents an ecosystem where naturally low pH groundwater (7.14-8.07) has been discharging offshore at highly localized points (called ojos) for millennia. We present preliminary chemical and biological data on a selection of ojos from lagoon sites in Puerto Morelos, Mexico. Our findings indicate a decrease in species richness and size with proximity to the low pH waters. We address the potential long-term implications of low pH, low aragonite saturation state on coral reef ecosystems.
Crook, E. D., Paytan, A., Potts, D. C., Hernandez Terrones, L. & Rebolledo-Vieyra, M., 2010. The impact of low pH, low aragonite saturation state on calcifying corals: an in-situ study of ocean acidification from the “ojos” of Puerto Morelos, Mexico. American Geophysical Union, Fall Meeting 2010, abstract #OS21D-1542. Abstract.