The fate of pelagic CaCO3 production in a high CO2 ocean: a model study

This model study addresses the change in pelagic calcium carbonate production (CaCO<sub>3</sub>, as calcite in the model) and dissolution in response to rising atmospheric CO2. The parameterization of CaCO3 production includes a dependency on the saturation state of seawater with respect to calcite. It was derived from laboratory and mesocosm studies on particulate organic and inorganic carbon production in Emiliania huxleyi as a function of pCO2. The model predicts values of CaCO3 production and dissolution in line with recent estimates. The effect of rising pCO2 on CaCO3 production and dissolution was quantified by means of model simulations forced with atmospheric CO2 increasing at a rate of 1% per year from 286 ppm to 1144 ppm over a 140 year time-period. The simulation predicts a decrease of CaCO3 production by 27%. The combined change in production and dissolution of CaCO3 yields an excess uptake of CO2 from the atmosphere by the ocean of 5.9 GtC over the period of 140 years.

Gehlen M., Gangstø R., Schneider B., Bopp L., Aumont O., & Ethe C., 2007. The fate of pelagic CaCO3 production in a high CO2 ocean: a model study. Biogeosciences 4: 505-519. Article.

Technorati Tags: , ,

0 Responses to “The fate of pelagic CaCO3 production in a high CO2 ocean: a model study”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.




Subscribe to the RSS feed

Powered by FeedBurner

Follow AnneMarin on Twitter

Blog Stats

  • 1,298,634 hits

OA-ICC HIGHLIGHTS

Ocean acidification in the IPCC AR5 WG II

OUP book