Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH

Coralline algae (CA), a type of primary calcifying producer presented in coastal ecosystems, are considered one of the highly sensitive organisms to marine environmental change. However, experimental studies on coralline algae responses to elevated seawater temperature and reduced pH have documented either contradictory or opposite results. In this study, we analysed the growth and physiological responses of coralline algae Porolithon onkodes to the elevated temperature (30.8°C) and reduced pH (7.8). The aim of this analysis was to observe the direct and combined effects, while elucidating the growth and photosynthesis in this response. It was demonstrated that the algae thallus growth rate and photosynthesis under elevated temperature were depressed by 21.5% and 14.9% respectively. High pCO2 enhanced the growth and photosynthesis of the thallus at ambient temperature, while they were deceased when both temperature and pCO2 were elevated. CA is among the most sensitive organisms to ocean acidification (OA) because of their precipitate high Mg-calcite. We hypothesize that coralline algae could increase their calcification rate in order to counteract the effects of moderate acidification, but offset by the effect of elevated temperature. Accordingly, our results also support the conclusion that global warming (GW) is a stronger threat to algal performance than OA. Our findings are also proposed that coralline algae may be more
resilient under OA than GW.

Lei X., Jiang L., Zhang Y., Zhou G., Lian J. & Huang H., 2020. Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH. Acta Oceanologica Sinica 39 (2): 132–137. Article.


Subscribe

Search

  • Reset

OA-ICC Highlights

Resources


Discover more from Ocean Acidification

Subscribe now to keep reading and get access to the full archive.

Continue reading